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Before the exam you should know:   
 The main ideas are: 

 • 

• 

• 

• 

• 

That you can differentiate the trig functions, the 
hyperbolic trig functions and their inverses.  
That you can apply the standard rules for differentiation 
(product rule, quotient rule and chain rule) to functions 
which involve the above. 
That you can integrate trig functions and hyperbolic trig 
functions. 
That you can integrate, arcsin(x), arccos(x), arctan(x), 
arccot(x), arsinh(x), arcosh(x) etc using integration by 
parts. 
Your trig identities and hyperbolic function identities and 
how to use them in integration problems. Particularly get 
familiar with useful substitutions to make for certain 
problems. 

• 

• 

Calculus using inverse trig 
functions & hyperbolic trig 
functions and their inverses. 

 
Calculating arc lengths. 

 
Differentiating the  
Inverse Trig Functions 

• How to calculate arc lengths. 
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It is important to be aware of what the range is for each of these, namely:  

arcsin
2 2
π π

− ≤ ≤  ,    0 arccos π≤ ≤ ,  arctan
2 2
π π

− ≤ ≤  
 

Standard Calculus of Inverse Trig and Hyperbolic Trig Functions 
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2 2

1 1 arctan x c
x a a a

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠∫  
2 2

1 arcsin x c
aa x

⎛ ⎞= +⎜ ⎟
⎝ ⎠−

∫  2 2

1 ar cosh x c
ax a

⎛ ⎞= +⎜ ⎟
⎝ ⎠−

∫  

2 2

1 ar sinh x c
ax a

⎛ ⎞= +⎜ ⎟
⎝ ⎠+

∫  
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• 
2 2

1 1 1 1 2arsinh
2 24 16 32 ( 2) 4

xdx dx c
x x x

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠+ + + +∫ ∫ 2

+

• 

 

2 2
2

16
4 4 1 4 1 4 4 6 16arcsin arcsin

3 3 3 321 2155 3 9 21 1
9 3 36 6

x
xdx dx dx c c

xx x x x

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠= = = ⎜ ⎟ + = ⎜ ⎟
⎝ ⎠+ − ⎜ ⎟⎛ ⎞ ⎛ ⎞− − ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ +

• 

 

2 2

3 3 1 3 arcosh
2 22 4 10 ( 1) 6

xdx dx c
x x x

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠+ − + −∫ ∫

1
6

+

• 

 

 
2

4

2arcosh( )
1

dy xy x
dx x

= ⇒ =
−

 (to see this use the chain rule, set 2z x=  and then dy dy dz
dx dz dx

= ). 

 
Some useful integration tricks 
Splitting up an integration:  e.g. 

5 5 5

2 2 2
1 1 1

5 5
4 4

x xdx dx dx
x x x
+

= +
+ + +∫ ∫ ∫ 4

 

By inspection: e.g. Since  gives 2ln( 4)x + 2

2
4

x
x +

when differentiated, we have 2
2

1 ln( 4)
4 2

x dx x c
x

= +
+∫ +  or 

since 
1

2 2( 1)x +  gives 
1

2 2( 1)x x
−

+  when differentiated, we have 2

2
1

1
x dx x c

x
= + +

+∫  

Using clever substitutions: e.g. the substitution sinh( )u x=  will help you with 2 1x dx+∫ . 
 

Arc Length and Area 
 
The length of an arc between points A and B on a curve can be calculated by 

1
2 2

1B

A

x

x

dy dx
dx

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫  or 

1
2 2

1B

A

y

y

dx dy
dy

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫   

In parametric form this is:    

1
2 2 2

B

A

t

t

dx dy dt
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫  

The area of the surface formed when arc AB is rotated completely about Ox is  
1

2 2

2 1B

A

x

x

dyy dx
dx

π
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∫  or 

1
2 2

2 1B

A

y

y

dxx dy
dy

π
⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫  

In parametric form this (when rotated about the Ox) is: 

1
2 2 2

2 B

A

t

t

dx dyy d
dt dt

π t
⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫  

You should review examples of how this type of question and how to solve them. This obviously involves 
differentiation, algebraic manipulation and integration (often by substitution). 
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REVISION SHEET – FP2 (AQA) 
 

COMPLEX NUMBERS 1 

 

Before the exam you should know:  
 
• Multiply two complex numbers quickly and in one 

step, this will save you a lot of time in the exam. 

• Geometrically interpret 1 2z z−  as the distance 

between the complex numbers 1z  and 2z  in the 
Argand diagram. 

• Use the fact that 1 2 1 2( )z−  which 

equals the distance between 1z  and 2z−  in the 
Argand diagram. 

The main ideas are: 
 
• Manipulating complex 

numbers 
• Complex conjugates and 

roots of equations 
• The Argand diagram 
• Multiplying and dividing 

in polar form 

z z z+ = −

• Remember the exact values of the sine and cosine 

angles which are multiplies of and  , eg 
6 4
π π

2= . cos
4 2
πManipulating Complex 

Numbers. 
 
Multiplying, dividing, adding and subtracting 
 
• Multiplying, adding and subtracting were all covered in material in FP1.   
 
• You are also now required to be able to divide complex numbers, which is slightly more complicated. 

Whenever you see a complex number on the denominator of a fraction you can “get rid of it” by multiplying 
both top and bottom of the fraction by its complex conjugate.  

3 2 3 2 1 1 5  e.g. 
1 1 1

i i i
i i i

+ + +⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟− − +⎝ ⎠⎝ ⎠ 2
i+

i i

 

 

Complex Conjugates and Roots of Equations 
 
The complex conjugate of  is . z a b= + z a b∗ = −
 
• Remember zz ∗  is a real number and it equals the square of the modulus of z. 
 
• Complex roots of polynomial equations with real coefficients occur in conjugate pairs. This means that if you 

are told one complex root of a polynomial equation with real coefficients you are in fact being told two roots, 
two for the price of one). This is key to answering some very typical exam questions. 

 
• Due to the above, a polynomial equation with real coefficients of odd degree must have at least one real root. In 

certain exam questions you must use this fact to your advantage. 
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The Argand Diagram 
  

            
            
            
            
            
            
            
            
            
            
            
            

• In the Argand diagram the point (x, y) corresponds to the complex number x + yi.  
• You should be aware that the set of complex numbers z with for example 5 6i = is a circle of radius 6 

centred at 5 i−  (or  (5, −1)) in the Argand plane. 
z − +

• The argument of a complex number z, denoted arg( )z  is the angle it makes with the positive real axis in the 
Argand diagram, measured anticlockwise and such that . arg( )zπ π− < ≤

• When answering exam questions about points in the Argand  diagram be prepared to used geometrical 
arguments based around equilateral triangles, similar triangles, isosceles triangles and parallel lines to calculate 
lengths and angles. 

 
 
 
 
 
 
 
 
 
 
Multiplying and Dividing in Polar Form 
• If  has z x yi= +  and arg( )z r z θ= =  then θ . This is called the polar or modulus-argument 

form. 
(cos sin )z r iθ= +

• To multiply complex numbers in polar form we multiply their moduli and add their arguments. So if 1z  and 

2z are complex numbers we have 1 2 1 2z z z z=  and . Note: you may have to make 

adjustments so that 1 2arg( )z z is in the required range for example if 

1 2 1 2arg( ) arg argz z z z= +

1 2
7arg
12

 and argz zπ π= =
2

 then  

1 2 1 2
7 7 6 13arg( ) arg arg
12 2 12 12 12

z z z z π π π π π π+= + = + = = ≡ −11  

 
• To divide complex numbers in polar form we divide their moduli and subtract their arguments. So if 1z  and 

2z are complex numbers we have 11

2 2

zz
z z

=  and 1
1 2arg z . Again, adjustments to 

2

arg argz z
z

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
1

2

arg z
z

⎛ ⎞
⎜ ⎟  may 

be necessary.  
⎝ ⎠

− −( )1, 3  

( 22, )  

Imaginary 
axis

2 2 i+
 

1 3i− −
 

4i−
 

)40,−(  

Real axis 

Other sets of points in the complex plane. 
Where a and b are complex numbers, the set of complex numbers z such that 
 
1. ) θ= , is a half line starting from a in the direction θ arg(z a−
2. ( )z b− ,  is the line through a and b with the section between a and 

b (inclusive) removed. 
arg( ) argz a− =

3. )b π+ ,  is the line from a to b (not including a and b 
themselves). 
arg( ) arg(z a z− = −
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REVISION SHEET – FP2 (AQA) 
 

COMPLEX NUMBERS 2 

 

Before the exam you should know:  
 
• How to multiply and divide complex numbers in polar 

form. 
 

• What de Moivre’s theorem is and how to apply it. 
 

• About the exponential notation  
cos sinie iθ θ θ= + , iz x yi re θ= + =  

 

• How to apply de Moivre’s theorem to finding multiple 
angle formulae and to summing series. 

 

• About the n nth roots of unity, including how to 
represent them on an Argand diagram. 

The main ideas are: 
 
• 

• 
• 

• 

De Moivre’s Theorem and 
its applications 
Exponential notation 
Using both of the above to 
get formulae by summing 
C+jS series. 
nth roots of complex 
numbers 

De Moivre’s Theorem 
 

De Moivre’s Theorem states that ( )cos sin cos sinni n iθ θ θ+ = + θ for any integer n. Some applications of 
this are shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 1  
 

Evaluate . ( )121 i+
Solution  
 

The first thing to do is to write 1 in polar form. 

This is just 

j+

1 2 cos sin
4 4

i iπ π⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 

( ) ( )
( )
( )

12
1212Therefore 1 2 cos sin

4 4
64 cos3 sin 3

64 cos sin
64( 1 0)

i i

i

i

π π

π π

π π

⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

= +

= +

= − +

 

Example 2 
 

Express sin6θ in terms of multiple angles. 
 
Solution  
 

If cos s inz iθ θ= +  then 2 s 1ini z zθ −= − .  
So, 
   ( ) ( )66 6 12 sini zθ −= − z

6

 

( ) ( )
6 5 1 4 2 3 3 2 4 5

6 6 4 4 2 2

6 15 20 15 6

6 15 20

2cos6 12cos4 30cos2 20

z z z z z z z z z zz z

z z z z z z

θ θ θ

− − − − −

− − −

−= − + − + − +

= + − + + + −

= − + −
 
Therefore,  

664sin 2cos6 12cos4 30cos2 20θ θ θ θ− = − + −  
 

        

6 20 2cos6 12cos4 30cos2sin
64

10 cos6 6cos4 15cos2
32

θ θ θθ

θ θ θ

− + −
=

− + −
=

. 

Note: in example 2 on the right it is typical to be 
asked to go on to integrate sin6θ . De Moivre’s 
theorem can also be used to express multiple angles in 
terms of powers of the trig functions in a very 
straightforward way. 
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Exponential notation for complex numbers 
Exponential notation begins with cos sinie iθ θ θ= + . This means that any complex number, z, can be written 
in polar form as iz x yi re θ= + =  where r is the modulus of z and θ is the argument of z. 
 

nth roots of complex numbers 
 
The non-zero complex number (cos sin )r iθ θ+ has n 
different nth roots, which are: 
 

1 2 2cos sinn k kr i
n n

θ π θ π+ +⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
,  

where k = 0, 1, 2, …, n – 1. 
 
nth roots of complex numbers are best thought about 
geometrically, the diagram shows the 5th roots of 3+3i. 
 
You should be able to express these roots in polar form 
using the exponential notation. 

 
  

 

real axis

imaginary axis 

3-3

3 

-3 

1z  

2z  

3z  

4z  
5z  

2
5
π

 

3 3i+  

Example 
 
Find all the fourth roots of –64. 
 
Solution 
 

( ) ( )( )64 64 cos sin 64 ii e ππ π− = + =  
The modulus of each of the fourth roots must be the positive real fourth root of 64. This is 

( ) 3
2

1 1
64 4 464 64 2 2 2 2= = = =  

The argument of one of the roots is a quarter of the argument of –64. The argument of –64 is π so this is 
4
π . 

So one of the fourth roots of –64 is 42 2 cos sin 2 2
4 4

i
i e

ππ π⎛ ⎞⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

And the other fourth roots have the same modulus and arguments which are a further  2
4 2
π π
=  “on” from 

this one.  These are therefore, 
3
43 32 2 cos sin 2 2

4 4
i

i e
ππ π⎛ ⎞⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

3
45 5 3 32 2 cos sin 2 2 cos sin 2 2

4 4 4 4
i

i i

 
 
 
 
 
 
 
 

e
ππ π π π −⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

 

47 72 2 cos sin 2 2 cos sin 2 2
4 4 4 4

i
i i e

ππ π π π −⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

 



 the Further Mathematics network – www.fmnetwork.org.uk       V 07 1 2 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching each 
specification exactly.  

REVISION SHEET – FP2 (AQA) 
 

HYPERBOLIC TRIG FUNCTIONS 

 
The Hyperbolic Trig Functions 
 
These are defined as: 

sinh( )
2

x xe ex
−−

= , cosh( )
2

x xe ex
−+

= , 

sinh( )tanh( )
cosh( )

x x

x x

x e ex
x e e

−

−

−
= =

+
 .  

For example, 
ln10 ln10

110 9910sinh(ln10)
2 2

e e− −−
= =

Before the exam you should know:  
 

The main ideas are: 
 

20
= . 

 
 
The Inverse Hyperbolic Trig Functions 
 
Just as the hyperbolic trig functions are defined in terms of ex, their inverses can be expressed in term of logs. In 

fact 2arcosh( ) ln( 1),x x x= + −  2arsinh( ) ln( 1)x x x= + + , 1 1artanh( ) ln
2 1

xx
x

+⎛= ⎜ −⎝ ⎠
⎞
⎟ . You should be able to 

prove (and use) all of these. Here is the proof that 2arcosh( ) ln( 1)x x x= + − . 

Let , then ar cosh( )y x= cosh( )
2

y ye ex y
−+

= = . Rearranging this gives 0 2y ye x e−= − + . Multiplying this by ey 

gives 0 . This is a quadratic in e2 2 1y ye xe= − + y and using the formula for the roots of a quadratic gives 
2

22 4 4 1
2

y x xe x± −
= = ± x − . Taking logs gives 2ar cosh( ) ln( 1)y x x x= = ± − . Do you know why the 

expression with the minus sign is rejected here? 
These expressions can be used to give exact values of the inverse hyperbolic trig functions in term of logs.  
 
For example, 

25 5 5 5 16arcosh ln 1 ln ln(3)
3 3 3 3 9

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − = + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 

• 

• 

• 

Definitions of the hyperbolic 
trig functions and their 
inverses.  
Working with the hyperbolic 
trig functions 
Identities involving 
hyperbolic trig functions 

• The definitions sinh( )
2

x xe ex
−−

= , cosh( )
2

x xe ex
−+

= , 

sinh( )tanh( )
cosh( )

x x

x x

x e ex
x e e

−

−

−
= =

+
 

• That you can prove that 
2 2arccosh( ) ln( 1),arsinh( ) ln( 1)x x x x x x= + − = + +  

        1 1artanh( ) ln
2 1

xx
x

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
• 

• 

 

Your trig identities and hyperbolic function identities, 
experience will tell you when it is best to work in the 
exponential form when dealing with equations. 

 
And be able to prove hyperbolic identities from the 

definitions sinh( ) ,cosh( )
2 2

x x x xe e e ex x
− −− +

= = , it’s 

worth practicing indices for this. 
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Graphs of the Hyperbolic Trig Functions 

x

y

1-1

1

-1

2

tanh( )

sech ( )

y x
dy x
dx

=

=  

 
 
 
 
 
 
 
 
 
 
 

x

y

4-4

8

1

x

y

4-4

4

-4

cosh( )

sinh( )

y x
dy x
dx

=

=

sinh( )

cosh( )

y x
dy x
dx

=

=  

Graphs of the Inverse Hyperbolic Trig Functions 
 You must also know the graphs of the 

inverse hyperbolic trig functions, 
arsinh, arcosh and artanh. As for any 
function these are obtained by  
reflecting the respective graphs of sinh, 
cosh and tanh in y = x. The examples of 
arsinh and arcosh are shown here. 
Notice that arcosh(x) is only defined 
for x greater than or equal to 1. 
 

 
 

 
 

 
 
 

 
Identities Involving Hyperbolic Trig Functions 
 
Identities involving hyperbolic trig functions include: 

2 2 2 2cosh sinh 1,   cosh(2 ) cosh sinh ,   sin( ) sinh( )cosh( ) cosh( )sinh( )u u u u u u v u v u− = = + + = + v  
The only difference between a hyperbolic trig identity and the corresponding standard trig identity is that the 
sign is reversed when a product of two sines is replaced by a product of two sinhs. This is called Osborn’s Rule. 
 
You can prove any hyperbolic trig identity using their definitions and should be able to do this for the exam. 
 

Equations Involving Hyperbolic Trig Functions 
Example    
Solve the equation 13  giving your answer in terms of natural logarithms. cosh 5sinh 20x x+ =

Solution 13cosh 5sinh 20 13 5 20
2 2

x x x xe e e ex x
− −⎛ ⎞ ⎛ ⎞+ −

+ = ⇒ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

   18 8 40 0x xe e−⇒ + − =
  ( ) ( )29 20 4 0 9 2 2x x x xe e e e⇒ − + = ⇒ − − = 0  

  2 or 2
9

x xe e⇒ = =   2ln or ln 2 
9

x x⎛ ⎞  =⎜ ⎟
⎝ ⎠

⇒ =  
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SERIES AND INDUCTION 

 

Before the exam you should know: 
 
• The standard formula: 

1

n

r
r

=
∑ ,

2

1

n

r
r

=
∑ ,  

3

1

n

r
r

=
∑

• And be able to spot that a series like 
(1 2) (2 3) ... ( 1)n n× + × + + +  

can be written in sigma notation as: 

1

( 1
n

r

r r
=

The main ideas are: 
 
• Summing Series using 

standard formulae 
• Telescoping  
• Proof by Induction 

 )+∑  

• How to do proof by induction  

Summing Series 
 
Using standard formulae 
 
Fluency is required in manipulating and simplify standard formulae sums like: 
 

( )2 3

1 1 1

n

r

r
=
∑ ( )1

n n

r r

r r r
= =

+ = +∑ ∑ ( )22 1 1
4 2

n n n n+ +
= +  

      ( ) ( )1 1 1
4

n n n n= + + +⎡ ⎤⎣ ⎦2  

      ( ) ( )21 1 2
4

n n n n= + + + . 

 
The Method of Differences (Telescoping) 
Since 

4 2 3
( 1)( 2) 1 2

r
r r r r r r

+
= − +

+ + + +
1

 (frequently in exam questions you are told to show that this is 

true first) it is possible to demonstrate that: 

1

4 3 1 2 3 1 2 3 12 ...
( 1)( 2) 2 3 2 3 4 3 4 5

2 3 1 2 3 1 2 3 1                              
2 1 1 1 1

n

r

r
r r r

n n n n n n n n n

=

+ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛+ − + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜− − − + + +⎝ ⎠ ⎝ ⎠ ⎝

∑

2
⎞
⎟
⎠

 

 
In this kind of expression many terms cancel with each other. For example, the (+) 1 in the first bracket 

cancels with the (–)
3

3
3

 in the second bracket and the (+) 2
3

in the third bracket. (subsequent fractions that are 

cancelling are doing so with terms in the “…” part of the sum.)  

This leaves
1

4 3 2
( 1)( 2) 2 1

n

r

r
r r r n n=

+
= − +

+ + + +∑ 1
2

. 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
each specification exactly.  
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Proof by Induction 
 
1. Using proof by induction to prove a formula for the summation of a series,  

E.g., Prove that 2

1

(2 1)
n

r

r n
=

− =∑ . 

 
2. Other miscellaneous questions. These are usually very easy, in fact easier than the questions which fall 
into the categories above, so long as you don’t panic, keep a clear head and apply what you know.  

E.g., show that if  for all natural numbers n. 
5 8 1 4 8

  then   
2 3 2 1 4

n n n
M M

n n
+⎛ ⎞ ⎛

= =⎜ ⎟ ⎜− − − −⎝ ⎠ ⎝

⎞
⎟
⎠

 
Example 
 

Prove by induction that, for all positive integers n, 
1

13 1 (3 5)
2

n

r

r n n
=

+ = +∑ . 

 
Solution 
 

When n = 1 the left hand side equals ( )3 1 1 4× + = . The right hand side is 1 1 ((3 1) 5) 4
2
× × × + = . So the 

statement is true when n = 1. 
 

Assume the statement is true when n = k. In other words 
1

13 1 (3 5)
2

k

r

r k k
=

+ = +∑ . 

It must now be shown that the statement would be true when n = k + 1, i.e. that  
1

1

13 1 ( 1)(3 8)
2

k

r
r k k

+

=

+ = + +∑ . 

 
Now, 

( ) ( )
1

1 1

2

2

3 1 3 1 (3( 1) 1

1 (3 5) (3 4)
2
1 3 5 6 8
2
1 3 11 8
2
1 ( 1)(3 8)
2

k k

r r

r r k

k k k

k k k

k k

k k

+

= =

)+ = + + + +

= + + +

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤= + +⎣ ⎦

= + +

∑ ∑

 

 
So the statement is true when n = 1 and if it’s true when n = k, then it’s also true when n = k +1.  
 
Hence, by induction the statement is true for all positive integers, n.  

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
each specification exactly.  
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