Pure

Further Mathematics 2

Revision Notes

October 2016
Further Pure 2
1 Inequalities 3
Algebraic solutions 3
Graphical solutions 4
2 Series - Method of Differences 5
3 Complex Numbers 7
Modulus and Argument 7
Properties 7
Euler's Relation $e^{i \theta}$ 7
Multiplying and dividing in mod-arg form 7
De Moivre's Theorem 8
Applications of De Moivre's Theorem 8
$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$ and $z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$ 8
$n^{\text {th }}$ roots of a complex number. 9
Roots of polynomial equations with real coefficients 10
Loci on an Argand Diagram 10
Transformations of the Complex Plane 12
Loci and geometry 13
4 First Order Differential Equations 14
Separating the variables, families of curves 14
Exact Equations 14
Integrating Factors. 15
Using substitutions 15
5 Second Order Differential Equations 17
Linear with constant coefficients 17
(1) when $f(x)=0$ 17
(2) when $f(x) \neq 0$, Particular Integrals 18
D.E.s of the form $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ 21
6 Maclaurin and Taylor Series 22

1) Maclaurin series 22
2) Taylor series 22
3) Taylor series - as a power series in $(x-a)$ 22
4) Solving differential equations using Taylor series 22
Standard series 23
Series expansions of compound functions 25
7 Polar Coordinates 26
Polar and Cartesian coordinates 26
Sketching curves 26
Some common curves 26
Areas using polar coordinates 29
Tangents parallel and perpendicular to the initial line 30
Appendix 32
$n^{\text {th }}$ roots of 1 32
Short method 32
Sum of $n^{\text {th }}$ roots of 1 33
$1^{\text {st }}$ order differential equations 34
Justification of the Integrating Factor method. 34
Linear $2^{\text {nd }}$ order differential equations 35
Justification of the A.E. - C.F. technique for unequal roots 35
Justification of the A.E. - C.F. technique for equal roots 36
Justification of the A.E. - C.F. technique for complex roots 37
Justification that G.S. $=$ C.F. + P.I. 38
Maclaurin's Series 39
Proof of Maclaurin's series 39
Proof of Taylor's series 39

1 Inequalities

Algebraic solutions

Remember that if you multiply both sides of an inequality by a negative number, you must turn the inequality sign round: $2 x>3 \Rightarrow-2 x<-3$.

A difficulty occurs when multiplying both sides by, for example, $(x-2)$; this expression is sometimes positive $(x>2)$, sometimes negative $(x<2)$ and sometimes zero $(x=2)$. In this case we multiply both sides by $(x-2)^{2}$, which is always positive (provided that $x \neq 2$).

Example 1: Solve the inequality $2 x+3<\frac{x^{2}}{x-2}, \quad x \neq 2$
Solution: \quad Multiply both sides by $(x-2)^{2}$
we can do this since $(x-2) \neq 0$

$$
\begin{aligned}
& \Rightarrow \quad(2 x+3)(x-2)^{2}<x^{2}(x-2) \\
& \Rightarrow \quad(2 x+3)(x-2)^{2}-x^{2}(x-2)<0 \\
& \Rightarrow \quad(x-2)\left(2 x^{2}-x-6-x^{2}\right)<0 \\
& \Rightarrow \quad(x-2)(x-3)(x+2)<0 \\
& \Rightarrow \quad x<-2, \text { or } 2<x<3, \text { below } x \text {-axis }
\end{aligned}
$$

Note - care is needed when the inequality is \leq or \geq.
Example 2: Solve the inequality $\frac{x}{x+1} \geq \frac{2}{x+3}, \quad x \neq-1, x \neq-3$
Solution: Multiply both sides by $(x+1)^{2}(x+3)^{2}$
$\Rightarrow \quad x(x+1)(x+3)^{2} \geq 2(x+3)(x+1)^{2}$
which cannot be zero
$\Rightarrow \quad x(x+1)(x+3)^{2}-2(x+3)(x+1)^{2} \geq 0$
$\Rightarrow \quad(x+1)(x+3)\left(x^{2}+3 x-2 x-2\right) \geq 0$
$\Rightarrow \quad(x+1)(x+3)(x+2)(x-1) \geq 0$
from sketch it looks as though the solution is

$$
x \leq-3 \text { or }-2 \leq x \leq-1 \text { or } x \geq 1
$$

DO NOT MULTIPLY OUT

BUT since $x \neq-1, x \neq-3$,
the solution is $\quad x<-3$ or $-2 \leq x<-1$ or $x \geq 1$, above the x-axis

Graphical solutions

Example 1: On the same diagram sketch the graphs of $y=\frac{2 x}{x+3}$ and $y=x-2$.
Use your sketch to solve the inequality $\quad \frac{2 x}{x+3} \geq x-2$
Solution: First find the points of intersection of the two graphs

$$
\begin{array}{ll}
\Rightarrow & \frac{2 x}{x+3}=x-2 \\
\Rightarrow & 2 x=x^{2}+x-6 \\
\Rightarrow & 0=(x-3)(x+2) \\
\Rightarrow & x=-2 \text { or } 3
\end{array}
$$

From the sketch we see that
$x<-3$ or $-2 \leq x \leq 3$. Note that $x \neq-3$

For inequalities involving $|2 x-5|$ etc., it is often essential to sketch the graphs first.

Example 2: Solve the inequality $\left|x^{2}-19\right|<5(x-1)$.
Solution: It is essential to sketch the curves first in order to see which solutions are needed.
To find the point A, we need to solve
$-\left(x^{2}-19\right)=5 x-5 \Rightarrow x^{2}+5 x-24=0$
$\Rightarrow(x+8)(x-3)=0 \Rightarrow x=-8$ or 3

From the sketch $x \neq-8 \quad \Rightarrow \quad x=3$

To find the point B, we need to solve
$+\left(x^{2}-19\right)=5 x-5 \quad \Rightarrow \quad x^{2}-5 x-14=0$
$\Rightarrow(x-7)(x+2)=0 \Rightarrow x=-2$ or 7
From the sketch $x \neq-2 \quad \Rightarrow \quad x=7$
\Rightarrow the solution of $\left|x^{2}-19\right|<5(x-1)$ is $3<x<7$

2 Series－Method of Differences

The trick here is to write each line out in full and see what cancels when you add．
Do not be tempted to work each term out－you will lose the pattern which lets you cancel when adding．

Example 1：Write $\frac{1}{r(r+1)}$ in partial fractions，and then use the method of differences to find the sum $\sum_{r=1}^{n} \frac{1}{\mathrm{r}(\mathrm{r}+1)}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}$.

Solution：

$$
\frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1}
$$

$$
\text { put } r=1 \Rightarrow \frac{1}{1 \times 2}=\frac{1}{1}-, \frac{1}{2}
$$

$$
\text { put } r=2 \Rightarrow \frac{1}{2 \times 3}=\frac{1}{2} \mathscr{L}^{\prime}-\pi \frac{1}{3}
$$

put $r=n \Rightarrow \frac{1}{n(n+1)}=\frac{1}{n}$ K＇$^{\prime \prime} \frac{1}{n+1}$

$$
\text { adding } \Rightarrow \sum_{1}^{n} \frac{1}{r(r+1)}=1-\frac{1}{n+1}=\frac{n}{n+1}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { put } r=3 \Rightarrow \frac{1}{3 \times 4}=\frac{1}{3} \text { 上'~ーフ }^{\prime} \frac{1}{4} \\
\text { etc. }
\end{array} \\
& \text { etc. }
\end{aligned}
$$

Example 2: Write $\frac{2}{r(r+1)(r+2)}$ in partial fractions, and then use the method of differences to find the sum $\sum_{r=1}^{n} \frac{1}{r(r+1)(\mathrm{r}+2)}=\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\cdots+\frac{1}{n(n+1)(n+2)}$.

Solution:

$$
\frac{2}{r(r+1)(r+2)}=\frac{1}{r}-\frac{2}{r+1}+\frac{1}{r+2}
$$

$$
\begin{aligned}
& \text { put } r=1 \Rightarrow \frac{2}{1 \times 2 \times 3}=\frac{1}{1}-\frac{2}{2}+\pi \frac{1}{3} \\
& \text { put } r=2 \Rightarrow \frac{2}{2 \times 3 \times 4}=\frac{1}{2}-\pi \frac{2}{3}+, \rightarrow \frac{1}{4} \\
& \text { put } r=3 \Rightarrow \frac{2}{3 \times 4 \times 5}=\frac{1}{3}-\pi \frac{2}{4}+\pi \frac{1}{5} \\
& \text { put } r=4 \Rightarrow \frac{2}{4 \times 5 \times 6}=\frac{1}{4}-\pi \frac{2}{5}+\pi \frac{1}{6} \\
& \quad
\end{aligned}
$$

etc.

$$
\begin{gathered}
\vdots \\
\text { put } r=n-1 \Rightarrow \frac{2}{(n-1) n(n+1)}=\frac{1}{n-1}-\pi \frac{2}{n}+\frac{1}{n+1} \\
\text { put } r=n \Rightarrow \frac{2}{n(n+1)(n+2)}=\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}
\end{gathered}
$$

$$
\text { adding } \begin{aligned}
\Rightarrow \sum_{1}^{n} \frac{2}{r(r+1)(r+2)} & =\frac{1}{1}-\frac{2}{2}+\frac{1}{2}+\frac{1}{n+1}-\frac{2}{n+1}+\frac{1}{n+2} \\
& =\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2} \\
& =\frac{n^{2}+3 n+2-2 n-4+2 n+2}{2(n+1)(n+2)}
\end{aligned}
$$

$$
\Rightarrow \quad \sum_{1}^{n} \frac{2}{r(r+1)(r+2)}=\frac{n^{2}+3 n}{2(n+1)(n+2)}
$$

$$
\Rightarrow \quad \sum_{1}^{n} \frac{1}{r(r+1)(r+2)}=\frac{n^{2}+3 n}{4(n+1)(n+2)}
$$

3 Complex Numbers

Modulus and Argument

The modulus of $z=x+i y$ is the length of z
$\Rightarrow r=|z|=\sqrt{x^{2}+y^{2}}$
and the argument of z is the angle made by z with the positive x-axis, $-\pi<\arg z \leqslant \pi$.
N.B. $\arg z$ is not always equal to $\tan ^{-1}\left(\frac{y}{x}\right)$

Properties

$$
\begin{aligned}
& z=r \cos \theta+i r \sin \theta \\
& |z w|=|z||w|, \quad \text { and } \quad\left|\frac{z}{w}\right|=\frac{|z|}{|w|}
\end{aligned}
$$

$\arg (z w)=\arg z+\arg w, \quad$ and $\quad \arg \left(\frac{z}{w}\right)=\arg z-\arg w$

Euler's Relation $e^{i \theta}$

$$
\begin{aligned}
& z=e^{i \theta}=\cos \theta+i \sin \theta \\
& \frac{1}{z}=e^{-i \theta}=\cos \theta-i \sin \theta
\end{aligned}
$$

Example: Express $5 e^{\left(\frac{i 3 \pi}{4}\right)}$ in the form $x+i y$.
Solution: $\quad 5 e^{\left(\frac{i 3 \pi}{4}\right)}=5\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$

$$
=\frac{-5 \sqrt{2}}{2}+i \frac{5 \sqrt{2}}{2}
$$

Multiplying and dividing in mod-arg form

$$
\begin{aligned}
& r e^{i \theta} \times s e^{i \phi}=r s e^{i(\theta+\phi)} \\
& \equiv(r \cos \theta+i r \sin \theta) \times(s \cos \phi+i s \sin \phi)=r s \cos (\theta+\phi)+i r s \sin (\theta+\phi) \\
& \text { and } \\
& r e^{i \theta} \div s e^{i \phi}=\frac{r}{s} e^{i(\theta-\phi)} \\
& \equiv(r \cos \theta+i r \sin \theta) \div(s \cos \phi+i s \sin \phi)=\frac{r}{s} \cos (\theta-\phi)+i \frac{r}{s} \sin (\theta-\phi)
\end{aligned}
$$

De Moivre's Theorem

$$
\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta} \equiv(r \cos \theta+i r \sin \theta)^{n}=\left(r^{n} \cos n \theta+i r^{n} \sin n \theta\right)
$$

Applications of De Moivre's Theorem

Example: Express $\sin 5 \theta$ in terms of $\sin \theta$ only.
Solution: From De Moivre's Theorem we know that

$$
\begin{gathered}
\cos 5 \theta+i \sin 5 \theta=(\cos \theta+i \sin \theta)^{5} \\
=\cos ^{5} \theta+5 i \cos ^{4} \theta \sin \theta+10 i^{2} \cos ^{3} \theta \sin ^{2} \theta+10 i^{3} \cos ^{2} \theta \sin ^{3} \theta+5 i^{4} \cos \theta \sin ^{4} \theta+i^{5} \sin ^{5} \theta
\end{gathered}
$$

Equating imaginary parts

$$
\begin{aligned}
\Rightarrow \quad \sin 5 \theta & =5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta \\
& =5\left(1-\sin ^{2} \theta\right)^{2} \sin \theta-10\left(1-\sin ^{2} \theta\right) \sin ^{3} \theta+\sin ^{5} \theta \\
& =16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
\end{aligned}
$$

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \text { and } z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

$$
z=\cos \theta+i \sin \theta
$$

$$
\Rightarrow \quad z^{n}=(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)
$$

$$
\text { and } \frac{1}{z^{n}}=z^{-n}=(\cos \theta+i \sin \theta)^{-n}=(\cos n \theta-i \sin n \theta)
$$

from which we can show that

$$
\begin{aligned}
& \left(z+\frac{1}{z}\right)=2 \cos \theta \quad \text { and } \quad\left(z-\frac{1}{z}\right)=2 i \sin \theta \\
& z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \quad \text { and } \quad z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
\end{aligned}
$$

Example: Express $\sin ^{5} \theta$ in terms of $\sin 5 \theta, \sin 3 \theta$ and $\sin \theta$.
Solution: Here we are dealing with $\sin \theta$, so we use

$$
\begin{aligned}
& (2 i \sin \theta)^{5}=\left(z-\frac{1}{z}\right)^{5} \\
& \Rightarrow \quad 32 i^{5} \sin ^{5} \theta=z^{5}-5 z^{4}\left(\frac{1}{z}\right)+10 z^{3}\left(\frac{1}{z^{2}}\right)-10 z^{2}\left(\frac{1}{z^{3}}\right)+5 z\left(\frac{1}{z^{4}}\right)-\left(\frac{1}{z^{5}}\right) \\
& \Rightarrow \quad 32 i \sin ^{5} \theta=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right) \\
& \Rightarrow \quad 32 i \sin ^{5} \theta=2 i \sin 5 \theta-5 \times 2 i \sin 3 \theta+10 \times 2 i \sin \theta \\
& \Rightarrow \quad \sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)
\end{aligned}
$$

$n^{\text {th }}$ roots of a complex number

The technique is the same for finding $n^{\text {th }}$ roots of any complex number.
Example: Find the $4^{\text {th }}$ roots of $8 \sqrt{2}+8 \sqrt{2} i$, and show the roots on an Argand Diagram.
Solution: We need to solve the equation $\quad z^{4}=8 \sqrt{2}+8 \sqrt{2} i$

1. Let $z=r \cos \theta+i r \sin \theta$

$$
\Rightarrow \quad z^{4}=r^{4}(\cos 4 \theta+i \sin 4 \theta)
$$

2. $|8 \sqrt{2}+8 \sqrt{2} i|=8 \sqrt{2+2}=16$ and $\quad \arg (8 \sqrt{2}+8 \sqrt{2} i)=\frac{\pi}{4}$

$$
\Rightarrow \quad 8 \sqrt{2}+8 \sqrt{2} i=16\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

3. Then $z^{4}=8 \sqrt{2}+8 \sqrt{2} i$

$$
\text { becomes } \quad \begin{array}{rlrl}
r^{4}(\cos 4 \theta+i \sin 4 \theta) & =16\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) & \\
& =16\left(\cos \frac{9 \pi}{4}+i \sin \frac{9 \pi}{4}\right) & & \text { adding } 2 \pi \\
& =16\left(\cos \frac{17 \pi}{4}+i \sin \frac{17 \pi}{4}\right) & & \text { adding } 2 \pi \\
& =16\left(\cos \frac{25 \pi}{4}+i \sin \frac{25 \pi}{4}\right) & & \text { adding } 2 \pi
\end{array}
$$

4. $\Rightarrow r^{4}=16$ and $4 \theta=\frac{\pi}{4}, \frac{9 \pi}{4}, \frac{17 \pi}{4}, \frac{25 \pi}{4}$

$$
\Rightarrow r=2 \quad \text { and } \quad \theta=\frac{\pi}{16}, \frac{9 \pi}{16}, \quad \frac{17 \pi}{16}=\frac{-15 \pi}{16}, \quad \frac{25 \pi}{16}=\frac{-7 \pi}{16} ; \quad-\pi<\arg z \leqslant \pi
$$

5. $\Rightarrow \quad$ roots are $\quad z_{1}=2\left(\cos \frac{\pi}{16}+i \sin \frac{\pi}{16}\right) \quad=\quad 1.962+0.390 i$

$$
z_{2}=2\left(\cos \frac{9 \pi}{16}+i \sin \frac{9 \pi}{16}\right) \quad=-0.390+1.962 i
$$

$$
z_{3}=2\left(\cos \frac{-15 \pi}{16}+i \sin \frac{-15 \pi}{16}\right)=-1.962-0.390 i
$$

$$
z_{4}=2\left(\cos \frac{-7 \pi}{16}+i \sin \frac{-7 \pi}{16}\right)=0.390-1.962 i
$$

Notice that the roots are symmetrically placed around the origin, and the angle between roots is $\frac{2 \pi}{4}=\frac{\pi}{2}$ The angle between the $n^{\text {th }}$ roots will always be $\frac{2 \pi}{n}$.

For sixth roots the angle between roots will be $\frac{2 \pi}{6}=\frac{\pi}{3}$, and so on.

Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients, $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots . a_{2} x^{2}+a_{1} x+a_{0}=0$,
where all a_{i} are real, has a complex solution
2 . \Rightarrow any complex $n^{\text {th }}$ degree polynomial can be factorised into n linear factors over the complex numbers
2. If $z=a+i b$ is a root of (I), then its conjugate, $a-i b$ is also a root - see FP1.
3. By pairing factors with conjugate pairs we can say that any polynomial with real coefficients can be factorised into a combination of linear and quadratic factors over the real numbers.

Example: \quad Given that $3-2 i$ is a root of $z^{3}-5 z^{2}+7 z+13=0$
(a) Factorise over the real numbers
(b) Find all three real roots

Solution:

(a) $3-2 i$ is a root $\Rightarrow 3+2 i$ is also a root
$\Rightarrow \quad(z-(3-2 i))(z-(3+2 i))=\left(z^{2}-6 z+13\right)$ is a factor
$\Rightarrow \quad z^{3}-5 z^{2}+7 z+13=\left(z^{2}-6 z+13\right)(z+1)$
(b) $\quad \Rightarrow$ roots are $z=3-2 i, \quad 3+2 i$ and -1

Loci on an Argand Diagram

Two basic ideas

1. $|z-w|$ is the distance from w to z.
2. $\arg (z-(1+i))$ is the angle made by the half line joining $(1+i)$ to z, with the x-axis.

Example 1:

$|z-2-i|=3$ is a circle with centre $(2+i)$ and radius 3

Example 2:

$$
\begin{aligned}
& |z+3-i|=|z-2+i| \\
& \Leftrightarrow|z-(-3+i)|=|z-(2-i)|
\end{aligned}
$$

is the locus of all points which are equidistant from the points
$A(-3,1)$ and $B(2,-1)$, and so is the perpendicular bisector of $A B$.

Example 3:

$\arg (z-4)=\frac{5 \pi}{6}$ is a half line, from $(4,0)$, making an angle of $\frac{5 \pi}{6}$ with the x-axis.

Example 4:

$|z-3|=2|z+2 i|$ is a circle
(Apollonius's circle).
To find its equation, put $z=x+i y$

$$
\begin{array}{ll}
\Rightarrow \quad|(x-3)+i y|=2|x+i(y+2)| & \text { square both sides } \\
\Rightarrow \quad(x-3)^{2}+y^{2}=4\left(x^{2}+(y+2)^{2}\right) & \text { leading to } \\
\Rightarrow \quad 3 x^{2}+6 x+3 y^{2}+16 y+7=0 & \\
\Rightarrow \quad(x+1)^{2}+\left(y+\frac{8}{3}\right)^{2}=\frac{52}{9} &
\end{array}
$$

which is a circle with centre $\left(-1, \frac{-8}{3}\right)$, and radius $\frac{2 \sqrt{13}}{3}$.

Example 5:

$$
\begin{aligned}
& \arg \left(\frac{z-2}{z+5}\right)=\frac{\pi}{6} \\
& \Rightarrow \arg (z-2)-\arg (z+5)=\frac{\pi}{6} \\
& \Rightarrow \theta-\phi=\frac{\pi}{6}
\end{aligned}
$$

which gives the arc of the circle as shown.

N.B.

The corresponding arc below the x-axis would have equation

$$
\arg \left(\frac{z-2}{z+5}\right)=-\frac{\pi}{6}
$$

as $\theta-\phi$ would be negative in this picture.
(θ is a 'larger negative number' than ϕ.)

Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane, $z=x+i y$ and $w=u+i v$.
Example 1: Find the image of the circle $|z-5|=3$
under the transformation $w=\frac{1}{z-2}$.
Solution: First rearrange to find z

$$
w=\frac{1}{z-2} \Rightarrow z-2=\frac{1}{w} \quad \Rightarrow \quad z=\frac{1}{w}+2
$$

Second substitute in equation of circle

$$
\begin{aligned}
& \Rightarrow \quad\left|\frac{1}{w}+2-5\right|=3 \quad \Rightarrow \quad\left|\frac{1-3 w}{w}\right|=3 \\
& \Rightarrow \quad|1-3 w|=3|w| \quad \Rightarrow \quad 3\left|\frac{1}{3}-w\right|=3|w| \\
& \Rightarrow \quad\left|w-\frac{1}{3}\right|=|w|
\end{aligned}
$$

which is the equation of the perpendicular bisector of the line joining 0 to $\frac{1}{3}$,
$\Rightarrow \quad$ the image is the line $u=\frac{1}{6}$

Always consider the 'modulus technique' (above) first;

if this does not work then use the $u+i v$ method shown below.

Example 2: Show that the image of the line $x+4 y=4$ under the transformation $w=\frac{1}{z-3}$ is a circle, and find its centre and radius.
Solution: \quad First rearrange to find $z \Rightarrow z=\frac{1}{w}+3$
The 'modulus technique' is not suitable here.

$$
\begin{aligned}
& z=x+i y \quad \text { and } w=u+i v \\
& \Rightarrow \quad z=\frac{1}{w}+3=\frac{1}{u+i v}+3=\frac{1}{u+i v} \times \frac{u-i v}{u-i v}+3 \\
& \Rightarrow \quad x+i y=\frac{u-i v}{u^{2}+v^{2}}+3
\end{aligned}
$$

Equating real and imaginary parts $x=\frac{u}{u^{2}+v^{2}}+3$ and $y=\frac{-v}{u^{2}+v^{2}}$
$\Rightarrow x+4 y=4 \quad$ becomes $\frac{u}{u^{2}+v^{2}}+3-\frac{4 v}{u^{2}+v^{2}}=4$
$\Rightarrow \quad u^{2}-u+v^{2}+4 v=0$
$\Rightarrow \quad\left(u-\frac{1}{2}\right)^{2}+(v+2)^{2}=\frac{17}{4}$
which is a circle with centre $\left(\frac{1}{2},-2\right)$ and radius $\frac{\sqrt{17}}{2}$.
There are many more examples in the book, but these are the two important techniques.

Loci and geometry

It is always important to think of diagrams.
Example: $\quad z$ lies on the circle $|z-2 i|=1$.
Find the greatest and least values of $\arg z$.
Solution: Draw a picture!
The greatest and least values of $\arg z$ will occur at B and A.

Trigonometry tells us that
$\theta=\frac{\pi}{6}$
and so greatest and least values of
$\arg z$ are $\frac{2 \pi}{3}$ and $\frac{\pi}{3}$

4 First Order Differential Equations

Separating the variables, families of curves

Example: Find the general solution of
$\frac{d y}{d x}=\frac{y}{2 x(x+1)}, \quad$ for $x>0$,
and sketch some of the family of solution curves.
Solution: $\quad \frac{d y}{d x}=\frac{y}{2 x(x+1)} \Rightarrow \quad \int \frac{2}{y} d y=\int \frac{1}{x(x+1)} d x=\int \frac{1}{x}-\frac{1}{x+1} d x$
$\Rightarrow \quad 2 \ln y=\ln x-\ln (x+1)+\ln A$
$\Rightarrow \quad y^{2}=\frac{A x}{x+1}$
Thus for varying values of A and for $x>0$, we have

Exact Equations

In an exact equation the L.H.S. is an exact derivative (really a preparation for Integrating Factors).

Example: \quad Solve $\sin x \frac{d y}{d x}+y \cos x=3 x^{2}$
Solution: Notice that the L.H.S. is an exact derivative

$$
\begin{aligned}
& \sin x \frac{d y}{d x}+y \cos x=\frac{d}{d x}(y \sin x) \\
& \Rightarrow \quad \frac{d}{d x}(y \sin x)=3 x^{2} \\
& \Rightarrow \quad y \sin x=\int 3 x^{2} d x=x^{3}+c \\
& \Rightarrow \quad y=\frac{x^{3}+c}{\sin x}
\end{aligned}
$$

Integrating Factors

$\frac{d y}{d x}+P y=Q \quad$ where P and Q are functions of x only.
In this case, multiply both sides by an Integrating Factor, $R=e^{\int P d x}$.
The L.H.S. will now be an exact derivative, $\frac{d}{d x}(R y)$.
Proceed as in the above example.
Example: \quad Solve $\quad x \frac{d y}{d x}+2 y=1$
Solution: \quad First divide through by x

$$
\Rightarrow \quad \frac{d y}{d x}+\frac{2}{x} y=\frac{1}{x} \quad \text { now in the correct form }
$$

Integrating Factor, I.F., is $R=e^{\int P d x}=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$

$$
\begin{array}{lll}
\Rightarrow & x^{2} \frac{d y}{d x}+2 x y=x & \text { multiplying by } x^{2} \\
\Rightarrow & \frac{d}{d x}\left(x^{2} y\right)=x, & \text { check that it is an exact derivative } \\
\Rightarrow & x^{2} y=\int x d x=\frac{x^{2}}{2}+c & \\
\Rightarrow \quad y=\frac{1}{2}+\frac{c}{x^{2}} &
\end{array}
$$

Using substitutions

Example 1: Use the substitution $y=v x$ (where v is a function of x) to solve the equation $\frac{d y}{d x}=\frac{3 y x^{2}+y^{3}}{x^{3}+x y^{2}}$.
Solution: $\quad y=v x \quad \Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\Rightarrow \quad \frac{d y}{d x}=\frac{3 y x^{2}+y^{3}}{x^{3}+x y^{2}} \Rightarrow v+x \frac{d v}{d x}=\frac{3(v x) x^{2}+(v x)^{3}}{x^{3}+x(v x)^{2}}=\frac{3 v+v^{3}}{1+v^{2}}
$$

and we can now separate the variables

$$
\begin{aligned}
& \Rightarrow \quad x \frac{d v}{d x}=\frac{3 v+v^{3}}{1+v^{2}}-v=\frac{3 v+v^{3}-v-v^{3}}{1+v^{2}}=\frac{2 v}{1+v^{2}} \\
& \Rightarrow \quad \frac{1+v^{2}}{2 v} \frac{d v}{d x}=\frac{1}{x} \\
& \Rightarrow \quad \int \frac{1}{2 v}+\frac{v}{2} d v=\int \frac{1}{x} d x \\
& \Rightarrow \quad \frac{1}{2} \ln v+\frac{v^{2}}{4}=\ln x+c \\
& \text { But } \quad v=\frac{y}{x}, \Rightarrow \quad \frac{1}{2} \ln \frac{y}{x}+\frac{y^{2}}{4 x^{2}}=\ln x+c \\
& \Rightarrow \quad 2 x^{2} \ln y+y^{2}=6 x^{2} \ln x+c^{\prime} x^{2} \quad \quad c^{\prime} \text { is new arbitrary constant }
\end{aligned}
$$

and I would not like to find $y!!!$

If told to use the substitution $v=\frac{y}{x}$, rewrite as $y=v x$ and proceed as in the above example.

Example 2: Use the substitution $y=\frac{1}{z}$ to solve the differential equation

$$
\frac{d y}{d x}=y^{2}+y \cot x .
$$

Solution: $\quad y=\frac{1}{z} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{-1}{z^{2}} \frac{d z}{d x}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{-1}{z^{2}} \frac{d z}{d x}=\frac{1}{z^{2}}+\frac{1}{z} \cot x \\
& \Rightarrow \quad \frac{d z}{d x}+z \cot x=-1
\end{aligned}
$$

Integrating factor is $R=e^{\int \cot x d x}=e^{\ln (\sin x)}=\sin x$

$$
\begin{array}{ll}
\Rightarrow \quad \sin x \frac{d z}{d x}+z \cos x=-\sin x & \\
\Rightarrow \quad \frac{d}{d x}(z \sin x)=-\sin x & \text { check that it is an exact derivative } \\
\Rightarrow \quad z \sin x=\cos x+c & \\
\Rightarrow \quad z=\frac{\cos x+c}{\sin x} & \text { but } z=\frac{1}{y} \\
\Rightarrow \quad y=\frac{\sin x}{\cos x+c} &
\end{array}
$$

Example 3: Use the substitution $z=x+y$ to solve the differential equation $\frac{d y}{d x}=\cos (x+y)$

Solution: $\quad z=x+y \quad \Rightarrow \frac{d z}{d x}=1+\frac{d y}{d x}$

$$
\Rightarrow \quad \frac{d z}{d x}=1+\cos z
$$

$\Rightarrow \quad \int \frac{1}{1+\cos z} d z=\int d x \quad$ separating the variables
$\Rightarrow \quad \int \frac{1}{2} \sec ^{2}\left(\frac{z}{2}\right) d z=x+c$
$1+\cos z=1+2 \cos ^{2}\left(\frac{z}{2}\right)-1=2 \cos ^{2}\left(\frac{z}{2}\right)$
$\Rightarrow \quad \tan \left(\frac{z}{2}\right)=x+c$
But $z=x+y \Rightarrow \tan \left(\frac{x+y}{2}\right)=x+c$

5 Second Order Differential Equations

Linear with constant coefficients

$a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$
where a, b and c are constants.
(1) when $f(x)=0$

First write down the Auxiliary Equation, A.E
A.E. $\quad a m^{2}+b m+c=0$
and solve to find the roots $m=\alpha$ or β
(i) If α and β are both real numbers, and if $\alpha \neq \beta$
then the Complimentary Function, C.F., is
$y=A e^{\alpha x}+B e^{\beta x}, \quad$ where A and B are arbitrary constants of integration
(ii) If α and β are both real numbers, and if $\alpha=\beta$
then the Complimentary Function, C.F., is
$y=(A+B x) e^{\alpha x}, \quad$ where A and B are arbitrary constants of integration
(iii) If α and β are both complex numbers, and if $\alpha=a+i b, \beta=a-i b$ then the Complimentary Function, C.F.,
$y=e^{a x}(A \sin b x+B \cos b x)$,
where A and B are arbitrary constants of integration
Example 1: \quad Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=0$
Solution: A.E. is $m^{2}+2 m-3=0$

$$
\begin{aligned}
& \Rightarrow \quad(m-1)(m+3)=0 \\
& \Rightarrow \quad m=1 \text { or }-3
\end{aligned}
$$

$$
\Rightarrow \quad y=A e^{x}+B e^{-3 x} \quad \text { when } f(x)=0, \text { the C.F. is the solution }
$$

Example 2: \quad Solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$
Solution: \quad A.E. is $m^{2}+6 m+9=0$
$\Rightarrow \quad(m+3)^{2}=0$
$\Rightarrow \quad m=-3$ (and -3)
repeated root
$\Rightarrow \quad y=(A+B x) e^{-3 x}$
when $f(x)=0$, the C.F. is the solution

Example 3: Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+13 y=0$
Solution: A.E. is $m^{2}+4 m+13=0$
$\Rightarrow \quad(m+2)^{2}=-9=(3 i)^{2}$
$\Rightarrow \quad(m+2)= \pm 3 i$
$\Rightarrow \quad m=-2-3 i$ or $-2+3 i$
$\Rightarrow \quad y=e^{-2 x}(A \sin 3 x+B \cos 3 x)$
when $f(x)=0$, the C.F. is the solution

(2) when $f(x) \neq 0$, Particular Integrals

First proceed as in (1) to find the Complimentary Function, then use the rules below to find a Particular Integral, P.I.

Second the General Solution, G.S. , is found by adding the C.F. and the P.I.
\Rightarrow G.S. $=$ C.F. + P.I.
Note that it does not matter what P.I. you use, so you might as well find the easiest, which is what these rules do.
(1) $f(x)=e^{k x}$.

Try $y=A e^{k x}$
unless $e^{k x}$ appears, on its own, in the C.F., in which case try $y=C x e^{k x}$
unless $x e^{k x}$ appears, on its own, in the C.F., in which case try $y=C x^{2} e^{k x}$.
(2) $f(x)=\sin k x$ or $f(x)=\cos k x$

Try $y=C \sin k x+D \cos k x$
unless $\sin k x$ or $\cos k x$ appear in the C.F., on their own, in which case
try $y=x(C \sin k x+D \cos k x)$
(3) $\quad \boldsymbol{f}(\boldsymbol{x})=$ a polynomial of degree \boldsymbol{n}.

Try $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}$ unless a number, on its own, appears in the C.F., in which case
$\operatorname{try} f(x)=x\left(a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}\right)$
i.e. try $f(x)=$ a polynomial of degree n.
(4) In general
to find a P.I., try something like $f(x)$, unless this appears in the C.F. (or if there is a problem), then try something like $x f(x)$.

Example 1: \quad Solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+5 y=2 x$

Solution: A.E. is $m^{2}+6 m+5=0$

$$
\begin{array}{ll}
\Rightarrow & (m+5)(m+1)=0 \quad \Rightarrow \quad m=-5 \text { or }-1 \\
\Rightarrow & \text { C.F. is } y=A e^{-5 x}+B e^{-x}
\end{array}
$$

For the P.I., try $y=C x+\mathrm{D}$

$$
\Rightarrow \quad \frac{d y}{d x}=C \text { and } \frac{d^{2} y}{d x^{2}}=0
$$

Substituting in the differential equation gives

$$
\begin{array}{lll}
& 0+6 C+5(C x+D)=2 x & \\
\Rightarrow & 5 C=2 & \\
\Rightarrow & C=\frac{2}{5} & \text { comparing coefficients of } x \\
\text { and } & 6 C+5 D=0 & \\
\Rightarrow & D=\frac{-12}{25} & \\
\Rightarrow & \text { P.I. is } y=\frac{2}{5} x-\frac{12}{25} & \\
\Rightarrow & \text { G.S. is } y=A e^{-5 x}+B e^{-x}+\frac{2}{5} x-\frac{12}{25}
\end{array}
$$

Example 2: Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=e^{3 x}$
Solution: A.E. is is $m^{2}-6 m+9=0$

$$
\begin{array}{lll}
\Rightarrow & (m-3)^{2}=0 & \\
\Rightarrow & m=3 & \text { repeated root } \\
\Rightarrow & \text { C.F. is } y=(A x+B) e^{3 x} &
\end{array}
$$

In this case, both $e^{3 x}$ and $x e^{3 x}$ appear, on their own, in the C.F., so for a P.I. we try $y=C x^{2} e^{3 x}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=2 C x e^{3 x}+3 C x^{2} e^{3 x} \\
& \text { and } \quad \frac{d^{2} y}{d x^{2}}=2 C e^{3 x}+6 C x e^{3 x}+6 C x e^{3 x}+9 C x^{2} e^{3 x}
\end{aligned}
$$

Substituting in the differential equation gives

$$
\begin{aligned}
& 2 C e^{3 x}+12 C x e^{3 x}+9 C x^{2} e^{3 x}-6\left(2 C x e^{3 x}+3 C x^{2} e^{3 x}\right)+9 C x^{2} e^{3 x}=e^{3 x} \\
& \Rightarrow \quad 2 C e^{3 x}=e^{3 x} \\
& \Rightarrow \quad C=\frac{1}{2} \\
& \Rightarrow \quad \text { P.I. is } y=\frac{1}{2} x^{2} e^{3 x} \\
& \Rightarrow \quad \text { G.S. is } y=(A x+B) e^{3 x}+\frac{1}{2} x^{2} e^{3 x}
\end{aligned}
$$

Example 3: Solve $\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=4 \cos 2 t$ given that $x=0$ and $\dot{x}=1$ when $t=0$.

Solution: A.E. is $m^{2}-3 m+2=0$

$$
\begin{array}{ll}
\Rightarrow & m=1 \text { or } 2 \\
\Rightarrow & \text { C.F. is } x=A e^{t}+B e^{2 t}
\end{array}
$$

For the P.I. try $x=C \sin 2 t+D \cos 2 t$
BOTH $\sin 2 t$ AND $\cos 2 t$ are needed

$$
\begin{array}{ll}
\Rightarrow & \dot{x}=2 C \cos 2 t-2 D \sin 2 t \\
\text { and } & \ddot{x}=-4 C \sin 2 t-4 D \cos 2 t
\end{array}
$$

Substituting in the differential equation gives

$$
\begin{aligned}
& (-4 C \sin 2 t-4 D \cos 2 t)-3(2 C \cos 2 t-2 D \sin 2 t)+2(C \sin 2 t+D \cos 2 t)=4 \cos 2 t \\
& \Rightarrow \quad-2 C+6 D=0 \quad \Rightarrow \quad-C+3 D=0 \quad \text { comparing coefficients of } \sin 2 t \\
& \text { and } \quad-6 C-2 D=4 \quad \Rightarrow \quad 3 C+D=-2 \quad \\
& \Rightarrow \quad C=\frac{-3}{5} \text { and } D=\frac{-1}{5} \\
& \Rightarrow \quad \text { P.I. is } x=-\frac{3}{5} \sin 2 t-\frac{1}{5} \cos 2 t \\
& \Rightarrow \quad \text { G.S. is } x=A e^{t}+B e^{2 t}-\frac{3}{5} \sin 2 t-\frac{1}{5} \cos 2 t \\
& \Rightarrow \quad \dot{x}=A e^{t}+2 B e^{2 t}-\frac{6}{5} \cos 2 t+\frac{2}{5} \sin 2 t \\
& x=0 \text { and when } t=0 \quad \Rightarrow 0=A+B-\frac{1}{5} \\
& \text { and } \dot{x}=1 \text { when } t=0 \quad \Rightarrow 1=A+2 B-\frac{6}{5}
\end{aligned}
$$

$$
\Rightarrow \quad A=\frac{-9}{5} \quad \text { and } \quad B=2
$$

$$
\Rightarrow \quad \text { solution is } \quad x=\frac{-9}{5} e^{t}+2 e^{2 t}-\frac{6}{5} \sin 2 t-\frac{2}{5} \cos 2 t
$$

D.E.s of the form $a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=f(x)$

Substitute $x=e^{u}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d x}{d u}=e^{u}=x \quad \Rightarrow \quad \frac{d u}{d x}=\frac{1}{x} \\
& \text { and } \quad \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{1}{x} \frac{d y}{d u} \quad \Leftrightarrow \quad x \frac{d y}{d x}=\frac{d y}{d u} \quad \text { I } \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}} \frac{d y}{d u}+\frac{1}{x} \frac{d\left(\frac{d y}{} / d u\right)}{d x} \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}} \frac{d y}{d u}+\frac{1}{x} \frac{d(d y / d u)}{d u} \frac{d u}{d x} \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}} \frac{d y}{d u}+\frac{1}{x^{2}} \frac{d^{2} y}{d u^{2}} \\
& \Rightarrow \quad x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u}
\end{aligned}
$$

Thus we have $x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u}$ and $x \frac{d y}{d x}=\frac{d y}{d u} \quad$ from I and II
substituting these in the original equation leads to a second order D.E. with constant coefficients.

Example: \quad Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=-2 x^{2}$.

Solution: Using the substitution $x=e^{u}$, and proceeding as above

$$
\begin{array}{ll}
& x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u} \quad \text { and } x \frac{d y}{d x}=\frac{d y}{d u} \\
\Rightarrow \quad & \frac{d^{2} y}{d u^{2}}-\frac{d y}{d u}-3 \frac{d y}{d u}+3 y=-2 e^{2 u} \\
\Rightarrow \quad & \frac{d^{2} y}{d u^{2}}-4 \frac{d y}{d u}+3 y=-2 e^{2 u} \\
\Rightarrow \quad & \text { A.E. is } m^{2}-4 m+3=0 \\
\Rightarrow \quad & (m-3)(m-1)=0 \Rightarrow \quad m=3 \text { or } 1 \\
\Rightarrow \quad & \text { C.F. is } y=A e^{3 u}+B e^{u}
\end{array}
$$

For the P.I. try $y=C e^{2 u}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d u}=2 C e^{2 u} \text { and } \frac{d^{2} y}{d u^{2}}=4 C e^{2 u} \\
& \Rightarrow \quad 4 C e^{2 u}-8 C e^{2 u}+3 C e^{2 u}=-2 e^{2 u} \\
& \Rightarrow \quad C=2 \\
& \Rightarrow \quad \text { G.S. is } y=A e^{3 u}+B e^{u}+2 e^{2 u}
\end{aligned}
$$

$$
\text { But } x=e^{u} \quad \Rightarrow \quad \text { G.S. is } y=A x^{3}+B x+2 x^{2}
$$

6 Maclaurin and Taylor Series

1) Maclaurin series
$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\frac{x^{n}}{n!} f^{n}(0)+\cdots$
2) Taylor series
$f(x+a)=f(a)+x f^{\prime}(a)+\frac{x^{2}}{2!} f^{\prime \prime}(a)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots+\frac{x^{n}}{n!} f^{n}(a)+\cdots$
3) Taylor series - as a power series in $(x-a)$
replacing x by $(x-a)$ in 2) we get
$f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots+\frac{(x-a)^{n}}{n!} f^{n}(a)+\cdots$

4) Solving differential equations using Taylor series

(a) If we are given the value of y when $x=0$, then we use the Maclaurin series with

$$
\begin{array}{ll}
f(0)=y_{0} & \text { the value of } y \text { when } x=0 \\
f^{\prime}(0)=\left(\frac{d y}{d x}\right)_{0} & \text { the value of } \frac{d y}{d x} \text { when } x=0
\end{array}
$$

etc. to give
$f(x)=y=y_{0}+x\left(\frac{d y}{d x}\right)_{0}+\frac{x^{2}}{2!}\left(\frac{d^{2} y}{d x^{2}}\right)_{0}+\frac{x^{3}}{3!}\left(\frac{d^{3} y}{d x^{3}}\right)_{0}+\cdots+\frac{x^{n}}{n!}\left(\frac{d^{n} y}{d x^{n}}\right)_{0}+\cdots$
(b) If we are given the value of y when $x=a$, then we use the Taylor power series with
$f(a)=y_{a} \quad$ the value of y when $x=a$
$f^{\prime}(a)=\left(\frac{d y}{d x}\right)_{a} \quad$ the value of $\frac{d y}{d x}$ when $x=a$
etc. to give
$y=y_{a}+(x-a)\left(\frac{d y}{d x}\right)_{a}+\frac{(x-a)^{2}}{2!}\left(\frac{d^{2} y}{d x^{2}}\right)_{a}+\frac{(x-a)^{3}}{3!}\left(\frac{d^{3} y}{d x^{3}}\right)_{a}+\cdots$

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found using the results in 1) and 3).

Standard series

$$
\begin{array}{ll}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots & \text { converges for all real } x \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\cdots & \text { converges for all real } x \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n-1} \frac{x^{2 n-2}}{(2 n-2)!}+\cdots & \text { converges for all real } x \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots & \text { converges for }-1<x \leq 1 \\
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots+\frac{n(n-1) \cdots(n-r+1)}{r!} x^{r}+\cdots & \text { converges for }-1<x<1
\end{array}
$$

Example 1: Find the Maclaurin series for $f(x)=\tan x$, up to and including the term in x^{3}
Solution: $\quad f(x)=\tan x \quad \Rightarrow \quad f(0)=0$

$$
\begin{array}{llll}
\Rightarrow & f^{\prime}(x)=\sec ^{2} x & \Rightarrow & f^{\prime}(0)=1 \\
\Rightarrow & f^{\prime \prime}(x)=2 \sec ^{2} x \tan x & \Rightarrow & f^{\prime \prime}(0)=0 \\
\Rightarrow & f^{\prime \prime \prime}(x)=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x & \Rightarrow & f^{\prime \prime \prime}(0)=2
\end{array}
$$

$$
\text { and } \quad f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\frac{x^{n}}{n!} f^{n}(0)+\ldots
$$

$$
\Rightarrow \quad \tan x \cong 0+x \times 1+\frac{x^{2}}{2!} \times 0+\frac{x^{3}}{3!} \times 2 \quad \text { up to the term in } x^{3}
$$

$$
\Rightarrow \quad \tan x \cong x+\frac{x^{3}}{3}
$$

Example 2: Using the Maclaurin series for e^{x} to find an expansion of $e^{x+x^{2}}$, up to and including the term in x^{3}.

Solution: $\quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$

$$
\begin{array}{rlr}
\Rightarrow \quad e^{x+x^{2}} & \cong 1+\left(x+x^{2}\right)+\frac{\left(x+x^{2}\right)^{2}}{2!}+\frac{\left(x+x^{2}\right)^{3}}{3!} & \\
& \text { up to the term in } x^{3} \\
& \cong 1+x+x^{2}+\frac{x^{2}+2 x^{3}+\cdots}{2!}+\frac{x^{3}+\cdots}{3!} & \\
\Rightarrow \quad e^{x+x^{2}} & \cong 1+x+\frac{3}{2} x^{2}+\frac{7}{6} x^{3} & \text { up to the term in } x^{3} \\
& \text { up to the term in } x^{3}
\end{array}
$$

Example 3: Find a Taylor series for $\cot \left(x+\frac{\pi}{4}\right)$, up to and including the term in x^{2}.
Solution: $\quad f(x)=\cot x$ and we are looking for

$$
\begin{aligned}
& f\left(x+\frac{\pi}{4}\right)=f\left(\frac{\pi}{4}\right)+x f^{\prime}\left(\frac{\pi}{4}\right)+\frac{x^{2}}{2!} f^{\prime \prime}\left(\frac{\pi}{4}\right) \\
& f(x)=\cot x \\
& \Rightarrow \quad f\left(\frac{\pi}{4}\right)=1 \\
& \Rightarrow \quad f^{\prime}(x)=-\operatorname{cosec}^{2} x \quad \Rightarrow \quad f^{\prime}\left(\frac{\pi}{4}\right)=-2 \\
& \Rightarrow \quad f^{\prime \prime}(x)=2 \operatorname{cosec}^{2} x \cot x \quad \Rightarrow \quad f^{\prime \prime}\left(\frac{\pi}{4}\right)=4 \\
& \Rightarrow \quad \cot \left(x+\frac{\pi}{4}\right) \cong 1-2 x+\frac{x^{2}}{2!} \times 4 \quad \text { up to the term in } x^{2} \\
& \Rightarrow \quad \cot \left(x+\frac{\pi}{4}\right) \cong 1-2 x+2 x^{2} \quad \text { up to the term in } x^{2}
\end{aligned}
$$

Example 4: Use a Taylor series to solve the differential equation,

$$
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y=0 \quad \text { equation } \mathbf{I}
$$

up to and including the term in x^{3}, given that $y=1$ and $\frac{d y}{d x}=2$ when $x=0$. In this case the initial value of x is 0 , so we shall use

$$
\begin{aligned}
& f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\frac{x^{n}}{n!} f^{n}(0)+\cdots \\
\Leftrightarrow \quad & y=y_{0}+x\left(\frac{d y}{d x}\right)_{0}+\frac{x^{2}}{2!}\left(\frac{d^{2} y}{d x^{2}}\right)_{0}+\frac{x^{3}}{3!}\left(\frac{d^{3} y}{d x^{3}}\right)_{0}
\end{aligned}
$$

We already know that $y_{0}=1$ and $\left(\frac{d y}{d x}\right)_{0}=2$

$$
\Rightarrow \quad\left(\frac{d^{2} y}{d x^{2}}\right)_{0}=\left(-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-1\right)_{0}=-5 \quad \text { values when } x=0
$$

equation I

$$
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y=0
$$

Differentiating

$$
\Rightarrow \quad y \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x} \times \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x} \times \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0
$$

Substituting $y_{0}=1,\left(\frac{d y}{d x}\right)_{0}=2$ and $\left(\frac{d^{2} y}{d x^{2}}\right)_{0}=-5 \quad$ values when $x=0$

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{d^{3} y}{d x^{3}}\right)_{0}+2 \times\left({ }^{-} 5\right)+2 \times 2 \times\left({ }^{-} 5\right)+2=0 \\
& \Rightarrow \quad\left(\frac{d^{3} y}{d x^{3}}\right)_{0}=28 \\
& \Rightarrow \quad \text { solution is } y \cong 1+2 x+\frac{x^{2}}{2!} \times\left({ }^{-} 5\right)+\frac{x^{3}}{3!} \times 28 \\
& \Rightarrow \quad y \cong 1+2 x-\frac{5}{2} x^{2}+\frac{14}{3} x^{3}
\end{aligned}
$$

Series expansions of compound functions

Example: Find a polynomial expansion for

$$
\frac{\cos 2 x}{1-3 x}, \quad \text { up to and including the term in } x^{3}
$$

Solution: Using the standard series

$$
\begin{aligned}
& \cos 2 x=1-\frac{(2 x)^{2}}{2!}+\cdots \\
& \text { up to and including the term in } x^{3} \\
& \text { and } \quad(1-3 x)^{-1}=1+3 x+\frac{-1 \times-2}{2!}(-3 x)^{2}+\frac{-1 \times-2 \times-3}{3!}(-3 x)^{3} \\
& =1+3 x+9 x^{2}+27 x^{3} \quad \text { up to and including the term in } x^{3} \\
& \Rightarrow \quad \frac{\cos 2 x}{1-3 x}=\left(1-\frac{(2 x)^{2}}{2!}\right)\left(1+3 x+9 x^{2}+27 x^{3}\right) \\
& =1+3 x+9 x^{2}+27 x^{3}-2 x^{2}-6 x^{3} \quad \text { up to and including the term in } x^{3} \\
& \Rightarrow \quad \frac{\cos 2 x}{1-3 x}=1+3 x+7 x^{2}+21 x^{3} \quad \text { up to and including the term in } x^{3}
\end{aligned}
$$

$7 \quad$ Polar Coordinates

The polar coordinates of P are (r, θ)
$r=O P$, the distance from the origin or pole,
and θ is the angle made anti-clockwise with the initial line.

In the Edexcel syllabus r is always taken as positive or 0 , and $0 \leq \theta<2 \pi$
(But in most books r can be negative, thus $\left(-4, \frac{\pi}{2}\right)$ is the same point as $\left(4, \frac{3 \pi}{2}\right)$)

Polar and Cartesian coordinates

From the diagram
$r=\sqrt{x^{2}+y^{2}}$
and $\tan \theta=\frac{y}{x}$ (use sketch to find θ).
$x=r \cos \theta$ and $y=r \sin \theta$.

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The important values of θ are those for which $r=0$.

The sketches in these notes will show when r is negative by plotting a dotted line; these sections should be ignored as far as Edexcel A-level is concerned.

Some common curves

$r=a+b \cos \theta$

Cardiod

$$
a=b
$$

Limacon without dimple
$a \geq 2 b$,

Limacon with a dimple

$$
b \leq a<2 b
$$

Limacon with a loop

$$
a<b
$$

r negative in the loop

Line $(x=3)$

With Cartesian coordinates the graph of $y=f(x-a)$ is the graph of $y=f(x)$ translated through a in the x-direction.

In a similar way the graph of $r=3 \sec (\theta-\alpha)$, or $r=3 \sec (\alpha-\theta)$, is a rotation of the graph of $r=\sec \theta$ through α, anti-clockwise.
Line ($x=3$ rotated through $\frac{\pi}{6}$)
Line ($y=3$ rotated through $\frac{\pi}{6}$)

Rose Curves

$$
\begin{gathered}
r=4 \cos 3 \theta \\
0 \leq \theta<\pi
\end{gathered}
$$

$$
r=4 \cos 3 \theta
$$

$$
\pi \leq \theta<2 \pi
$$

$$
\begin{gathered}
r=4 \cos 3 \theta \\
0 \leq \theta<2 \pi
\end{gathered}
$$

below x-axis, r negative

above x-axis, r negative

whole curve for $r \geq 0$

The rose curve will always have n petals when n is odd, for $0 \leq \theta<2 \pi$.
$r=3 \cos 4 \theta$

When n is even there will be n petals for $r \geq 0$ and $0 \leq \theta<2 \pi$.

Thus, whether n is odd or even, the rose curve $r=a \cos \theta$ always has \boldsymbol{n} petals, when only the positive (or 0) values of \boldsymbol{r} are taken.

Edexcel only allow positive or 0 values of r.

Leminiscate of Bernoulli

Spiral $r=2 \theta$

Spiral $r=e^{\theta}$

Circle $r=10 \cos \theta$

Notice that in the circle on $O A$ as diameter, the angle P is 90° (angle in a semi-circle) and trigonometry gives us that $r=10 \cos \theta$.

Circle $r=10 \sin \theta$

In the same way $r=10 \sin \theta$ gives a circle on the y-axis.

Areas using polar coordinates

Remember: area of a sector is $\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& \quad \text { Area of } O P Q=\delta A \approx \frac{1}{2} r^{2} \delta \theta \\
& \Rightarrow \quad \text { Area } O A B \approx \sum\left(\frac{1}{2} r^{2} \delta \theta\right) \\
& \text { as } \delta \theta \rightarrow 0 \\
& \Rightarrow \quad \text { Area } O A B=\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} r^{2} d \theta
\end{aligned}
$$

Example: Find the area between the curve $r=1+\tan \theta$
and the half lines $\theta=0$ and $\theta=\frac{\pi}{3}$
Solution: \quad Area $=\int_{0}^{\pi / 3} \frac{1}{2} r^{2} d \theta$
$=\quad \int_{0}^{\pi / 3} \frac{1}{2}(1+\tan \theta)^{2} d \theta$
$=\quad \int_{0}^{\pi / 3} \frac{1}{2}\left(1+2 \tan \theta+\tan ^{2} \theta\right) d \theta$
$=\quad \int_{0}^{\pi / 3} \frac{1}{2}\left(2 \tan \theta+\sec ^{2} \theta\right) d \theta$
$=\frac{1}{2}[2 \ln (\sec \theta)+\tan \theta]_{0}^{\pi / 3}$
$=\quad \ln 2+\frac{\sqrt{3}}{2}$

Tangents parallel and perpendicular to the initial line

$$
\begin{aligned}
& y=r \sin \theta \text { and } x=r \cos \theta \\
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
\end{aligned}
$$

1) Tangents will be parallel to the initial line $(\theta=0)$, or horizontal, when $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d \theta}=0 \\
& \Rightarrow \quad \frac{d}{d \theta}(r \sin \theta)=0
\end{aligned}
$$

2) Tangents will be perpendicular to the initial line $(\theta=0)$, or vertical, when $\frac{d y}{d x}$ is infinite

$$
\begin{aligned}
& \Rightarrow \quad \frac{d x}{d \theta}=0 \\
& \Rightarrow \quad \frac{d}{d \theta}(r \cos \theta)=0
\end{aligned}
$$

Note that if both $\frac{d y}{d \theta}=0$ and $\frac{d x}{d \theta}=0$, then $\frac{d y}{d x}$ is not defined, and you should look at a sketch to help (or use l'Hôpital's rule).

Example: Find the coordinates of the points on $r=1+\cos \theta$ where the tangents are
(a) parallel to the initial line,
(b) perpendicular to the initial line.

Solution: $\quad r=1+\cos \theta$ is shown in the diagram.
(a) Tangents parallel to $\theta=0$ (horizontal)

$$
\begin{array}{lll}
\Rightarrow \quad \frac{d y}{d \theta}=0 \Rightarrow \quad \frac{d}{d \theta}(r \sin \theta)=0 & \\
\Rightarrow \quad \frac{d}{d \theta}((1+\cos \theta) \sin \theta)=0 & \Rightarrow \quad \frac{d}{d \theta}(\sin \theta+\sin \theta \cos \theta)=0 \\
\Rightarrow \quad \cos \theta-\sin ^{2} \theta+\cos ^{2} \theta=0 & \Rightarrow \quad 2 \cos ^{2} \theta+\cos \theta-1=0 \\
\Rightarrow \quad(2 \cos \theta-1)(\cos \theta+1)=0 & \Rightarrow & \cos \theta=\frac{1}{2} \text { or }-1 \\
\Rightarrow \quad \theta= \pm \frac{\pi}{3} \text { or } \pi & &
\end{array}
$$

(b) Tangents perpendicular to $\theta=0$ (vertical)
$\Rightarrow \quad \frac{d x}{d \theta}=0 \Rightarrow \frac{d}{d \theta}(r \cos \theta)=0$
$\Rightarrow \quad \frac{d}{d \theta}((1+\cos \theta) \cos \theta)=0 \quad \Rightarrow \quad \frac{d}{d \theta}\left(\cos \theta+\cos ^{2} \theta\right)=0$
$\Rightarrow \quad-\sin \theta-2 \cos \theta \sin \theta=0 \quad \Rightarrow \quad \sin \theta(1+2 \cos \theta)=0$
$\Rightarrow \quad \cos \theta=-\frac{1}{2}$ or $\sin \theta=0$
$\Rightarrow \quad \theta= \pm \frac{2 \pi}{3}$ or $0, \pi$
From the above we can see that
(a) the tangent is parallel to $\theta=0$
at $B\left(\theta=\frac{\pi}{3}\right)$, and $E\left(\theta=-\frac{\pi}{3}\right)$,
also at $\theta=\pi$, the origin - see below (c)
(b) the tangent is perpendicular to $\theta=0$
at $A(\theta=0), C\left(\theta=\frac{2 \pi}{3}\right)$ and $D\left(\theta=\frac{-2 \pi}{3}\right)$

(c) we also have both $\frac{d x}{d \theta}=0$ and $\frac{d y}{d \theta}=0$ when $\theta=\pi!!!$

From the graph it looks as if the tangent is parallel to $\theta=0$ at the origin, when $\theta=\pi$, and from l'Hôpital's rule it can be shown that this is true.

Appendix

$n^{\text {th }}$ roots of 1

Short method

Example: Find the $5^{\text {th }}$ roots of $-4+4 i=4 \sqrt{2} e^{3 \pi i / 4}$
Solution: First find the root with the smallest argument

$$
\left(4 \sqrt{2} e^{3 \pi i / 4}\right)^{1 / 5}=\sqrt{2} e^{3 \pi i / 20}
$$

Then sketch the symmetrical 'spider' diagram where the angle between successive roots is $2 \pi / 5=8 \pi / 20$ then find all five roots by successively adding $8 \pi / 20$ to the argument of each root
to give

$\sqrt{2} e^{3 \pi i / 20}, \sqrt{2} e^{11 \pi i / 20}, \sqrt{2} e^{19 \pi i / 20}$,
$\sqrt{2} e^{27 \pi i / 20}=\sqrt{2} e^{-13 \pi i / 20}$, and $\sqrt{2} e^{35 \pi i / 20}=\sqrt{2} e^{-5 \pi i / 20}$.

This can be generalized to find the $n^{\text {th }}$ roots of any complex number, adding $2 \pi / n$ successively to the argument of each root.

Warning: You must make sure that your method is very clear in an examination.

Sum of $n^{\text {th }}$ roots of 1

Consider the solutions of $z^{10}=1$, the complex $10^{\text {th }}$ roots of 1 .

Suppose that ω is the complex $10^{\text {th }}$ root of 1 with the smallest argument. The 'spider' diagram shows that the roots are $\omega, \omega^{2}, \omega^{3}, \omega^{4}, \ldots, \omega^{9}$ and 1 .

Symmetry indicates that the sum of all these roots is a real number, but to prove that this sum is 0 requires algebra.

$\omega \neq 1$, and $\omega^{10}=1$
$\Rightarrow \quad 1-\omega^{10}=0$
$\Rightarrow \quad(1-\omega)\left(1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\ldots+\omega^{9}\right)=0$
factorising
$\Rightarrow \quad 1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\ldots+\omega^{9}=0$,
since $1-\omega \neq 0$
$\Leftrightarrow \quad$ the sum of the complex $10^{\text {th }}$ roots of 1 is 0 .

This can be generalized to show that the sum of the $n^{\text {th }}$ roots of 1 is 0 , for any n.

$1^{\text {st }}$ order differential equations

Justification of the Integrating Factor method.

$\frac{d y}{d x}+P y=Q \quad$ where P and Q are functions of x only.
We are looking for an Integrating Factor, R (a function of x), so that multiplication by R of the L.H.S. of the differential equation gives an exact derivative.

Multiplying the L.H.S. by R gives

$$
R \frac{d y}{d x}+R P y
$$

If this is to be an exact derivative we can see, by looking at the first term, that we should try

$$
\begin{aligned}
& \frac{d}{d x}(R y)=R \frac{d y}{d x}+y \frac{d R}{d x}=R \frac{d y}{d x}+R P y \\
& \Rightarrow \quad y \frac{d R}{d x}=R P y \\
& \Rightarrow \quad \int \frac{1}{R} d R=\int P d x \\
& \Rightarrow \quad \ln R=\int P d x \\
& \Rightarrow \quad R \quad=e^{\int P d x}
\end{aligned}
$$

Thus $e^{\int P d x}$ is the required I.F., Integrating Factor.

Linear $\mathbf{2}^{\text {nd }}$ order differential equations

Justification of the A.E. - C.F. technique for unequal roots

$\frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$
without loss of generality we can take the coefficient of $\frac{d^{2} y}{d x^{2}}$ as 1 .
Let the roots of the A.E. be α and $\beta(\alpha \neq \beta)$, then the A.E. can be written as
$(m-\alpha)(m-\beta)=0 \Leftrightarrow m^{2}-(\alpha+\beta) m+\alpha \beta=0$
So the differential equation can be written
$\frac{d^{2} y}{d x^{2}}-(\alpha+\beta) \frac{d y}{d x}+\alpha \beta y=0$
I

We can 'sort of factorise' this to give
$\left(\frac{d}{d x}-\alpha\right)\left(\frac{d y}{d x}-\beta y\right)=0 \quad$ II 'multiply'out to check
Now put $\left(\frac{d y}{d x}-\beta y\right)=z, \quad$ in II, and we get $\quad \frac{d z}{d x}-\alpha z=0$
$\Rightarrow \quad \int \frac{1}{z} d z=\int \alpha d x \quad \Rightarrow \quad z=A e^{\alpha x}$
But $\left(\frac{d y}{d x}-\beta y\right)=z \quad \Rightarrow \quad \frac{d y}{d x}-\beta y=A e^{\alpha x}$
The Integrating Factor is $e^{-\beta x}$

$$
\begin{aligned}
& \Rightarrow \quad e^{-\beta x} \frac{d y}{d x}-\beta e^{-\beta x} y=A e^{\alpha x} e^{-\beta x} \Rightarrow \quad \frac{d\left(e^{-\beta x} y\right)}{d x}=A e^{(\alpha-\beta) x} \\
& \Rightarrow \quad e^{-\beta x} y=\frac{A}{(\alpha-\beta)} e^{(\alpha-\beta) x}+B \\
& \Rightarrow \quad y=A^{\prime} e^{\alpha x}+B e^{\beta x}
\end{aligned}
$$

which is the C.F., for unequal roots of the A.E.

Justification of the A.E. - C.F. technique for equal roots

$\frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$
without loss of generality we can take the coefficient of $\frac{d^{2} y}{d x^{2}}$ as 1 .
Let the roots of the A.E. be α and α, (equal roots) then the A.E. can be written as $(m-\alpha)(m-\alpha)=0 \Leftrightarrow m^{2}-2 \alpha m+\alpha^{2}=0$

So the differential equation can be written
$\frac{d^{2} y}{d x^{2}}-2 \alpha \frac{d y}{d x}+\alpha^{2} y=0$
I

We can 'sort of factorise' this to give

$$
\left(\frac{d}{d x}-\alpha\right)\left(\frac{d y}{d x}-\alpha y\right)=0 \quad \text { II } \quad \text { 'multiply'out to check }
$$

Now put $\left(\frac{d y}{d x}-\alpha y\right)=z, \quad$ in II, and we get $\quad \frac{d z}{d x}-\alpha z=0$
$\Rightarrow \quad \int \frac{1}{z} d z=\int \alpha d x \quad \Rightarrow \quad z=A e^{\alpha x}$
But $\left(\frac{d y}{d x}-\alpha y\right)=z \quad \Rightarrow \quad \frac{d y}{d x}-\alpha y=A e^{\alpha x}$
The Integrating Factor is $e^{-\alpha x}$

$$
\begin{aligned}
& \Rightarrow \quad e^{-\alpha x} \frac{d y}{d x}-\alpha e^{-\alpha x} y=A e^{\alpha x} e^{-\alpha x} \Rightarrow \quad \frac{d\left(e^{-\alpha x} y\right)}{d x}=A \\
& \Rightarrow \quad e^{-\alpha x} y=A x+B \\
& \Rightarrow \quad y=(A x+B) e^{\alpha x}
\end{aligned}
$$

which is the C.F., for equal roots of the A.E.

Justification of the A.E. - C.F. technique for complex roots

Suppose that α and β are complex roots of the A.E., then they must occur as a conjugate pair (see FP1),
$\Rightarrow \quad \alpha=a+i b$ and $\beta=a-i b$
$\Rightarrow \quad$ C.F. is $y=A e^{(a+i b) x}+B e^{(a-i b) x} \quad$ assuming that calculus works for complex nos. which it does
$\Rightarrow \quad y=e^{a x}\left(A e^{i b x}+B e^{-i b x}\right)=e^{a x}(A(\cos x+i \sin x)+B(\cos x-i \sin x))$
$\Rightarrow \quad$ C.F. is $y=e^{a x}(C \cos x+D \sin x), \quad$ where C and D are arbitrary constants.
We now have the rules for finding the C.F. as before
$a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 \quad$ where a, b and c are constants.
First write down the Auxiliary Equation, A.E
A.E. $\quad a m^{2}+b m+c=0$
and solve to find the roots $m=\alpha$ or β

- If α and β are both real numbers, and if $\alpha \neq \beta$
then the Complimentary Function, C.F., is
- $y=A e^{\alpha x}+B e^{\beta x}$, where A and B are arbitrary constants of integration
- If α and β are both real numbers, and if $\alpha=\beta$ then the Complimentary Function, C.F., is
- $y=(A+B x) e^{\alpha x}$, where A and B are arbitrary constants of integration
- If α and β are both complex numbers, and if $\alpha=a+i b, \beta=a-i b$ then the Complimentary Function, C.F.,
- $y=e^{a x}(A \sin b x+B \cos b x)$,
where A and B are arbitrary constants of integration

Justification that G.S. = C.F. + P.I.

Consider the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$
Suppose that u (a function of x) is any member of the Complimentary Function, and that v (a function of x) is a Particular Integral of the above D.E.

$$
\begin{array}{ll}
\Rightarrow & a u^{\prime \prime}+b u^{\prime}+c u=0 \\
\text { and } & a v^{\prime \prime}+b v^{\prime}+c v=f(x)
\end{array}
$$

$$
\text { Let } w=u+v
$$

$$
\text { then } \quad a w^{\prime \prime}+b w^{\prime}+c w=a(u+v)^{\prime \prime}+b(u+v)^{\prime}+c(u+v)
$$

$$
=\left(a u^{\prime \prime}+b u^{\prime}+c u\right)+\left(a v^{\prime \prime}+b v^{\prime}+c v\right)=0+f(x)=f(x)
$$

$\Rightarrow \quad w$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$
$\Rightarrow \quad$ all possible solutions $y=u+v$ are part of the General Solution.
We now have to show that any member of the G.S. can be written in the form $u+v$, where u is some member of the C.F., and v is the P.I. used above.

Let z be any member of the G.S, then $a z^{\prime \prime}+b z^{\prime}+c z=f(x)$.
Consider $z-v$

$$
a(z-v)^{\prime \prime}+b(z-v)^{\prime}+c(z-v)=\left(a z^{\prime \prime}+b z^{\prime}+c z\right)-\left(a v^{\prime \prime}+b v^{\prime}+c v\right)=f(x)-f(x)=0
$$

$\Rightarrow \quad(z-v)$ is some member of the C.F. - call it u
$\Rightarrow \quad z-v=u \Rightarrow z=u+v$
thus any member, z, of the G.S. can be written in the form $u+v$, where u is some member of the C.F., and v is the P.I. used above.

I and II \Rightarrow the Complementary Function + a Particular Integral forms the complete General Solution.

Maclaurin's Series

Proof of Maclaurin's series

To express any function as a power series in x
Let $\quad f(x)=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}+\ldots$ I
put $x=0 \quad \Rightarrow \quad f(0)=a$

$$
\frac{d}{d x} \quad \Rightarrow \quad f^{\prime}(x)=b+2 c x+3 d x^{2}+4 e x^{3}+5 f x^{4}+\ldots
$$

put $x=0 \quad \Rightarrow \quad f^{\prime}(0)=b$

$$
\begin{array}{cl}
\frac{d}{d x} & \Rightarrow \\
\text { put } x=0 & \Rightarrow \quad f^{\prime \prime}(x)=2 \times 1 c+3 \times 2 d x+4 \times 3 e x^{2}+5 \times 4 f x^{3}+\ldots \\
\frac{d}{d x} & \Rightarrow \quad f^{\prime \prime}(0)=2 \times 1 c \quad \Rightarrow \quad c=\frac{1}{2!} f^{\prime \prime}(0) \\
\text { put } x=0 & \Rightarrow \\
f^{\prime \prime \prime}(0)=3 \times 2 \times 1 d+4 \times 3 \times 2 e x+5 \times 4 \times 3 f x^{2}+\ldots \\
\hline 102 \times 1 d \quad \Rightarrow \quad d=\frac{1}{3!} f^{\prime \prime \prime}(0)
\end{array}
$$

continuing in this way we see that the coefficient of x^{n} in \mathbf{I} is $\frac{1}{n!} f^{n}(0)$

$$
\Rightarrow \quad f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots+\frac{x^{n}}{n!} f^{n}(0)+\ldots
$$

The range of x for which this series converges depends on $f(x)$, and is beyond the scope of this course.

Proof of Taylor's series

If we put $f(x)=g(x+a)$ then

$$
f(0)=g(a), f^{\prime}(0)=g^{\prime}(a), f^{\prime \prime}(0)=g^{\prime \prime}(a), \ldots, f^{n}(0)=g^{n}(a), \ldots
$$

and Maclaurin's series becomes

$$
g(x+a)=g(a)+x g^{\prime}(a)+\frac{x^{2}}{2!} g^{\prime \prime}(a)+\frac{x^{3}}{3!} g^{\prime \prime \prime}(a)+\ldots+\frac{x^{n}}{n!} g^{n}(a)+\ldots
$$

which is Taylor's series for $g(x+a)$ as a power series in x
Replace x by $(x-a)$ and we get

$$
g(x)=g(a)+(x-a) g^{\prime}(a)+\frac{(x-a)^{2}}{2!} g^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} g^{\prime \prime \prime}(a)+\ldots+\frac{(x-a)^{n}}{n!} g^{n}(a)+\ldots
$$

which is Taylor's series for $g(x)$ as a power series in $(x-a)$

Index

complex numbers, 7
applications of De Moivre's theorem, 8 argument, 7
De Moivre's theorem, 8
Euler's relation, 7
loci, 10
loci and geometry, 13
modulus, 7
nth roots, 9
$n^{\text {th }}$ roots of 1,32
roots of polynomial equations, 10
transformations, 12
first order differential equations, 14
exact equations, 14
families of curves, 14
integrating factors, 15
integrating factors - proof of method, 34
separating the variables, 14
using substitutions, 15
inequalities, 3
algebraic solutions, 3
graphical solutions, 4

Maclaurin and Taylor series, 22
expanding compound functions, 25
proofs, 39
standard series, 23
worked examples, 23
method of differences, 5
polar coordinates, 26
area, 29
cardiod, 26
circle, 29
leminiscate, 28
polar and cartesian, 26
$r=a \cos n \theta, 28$
spiral, 28
tangent, 30
second order differential equations, 17
auxiliary equation, 17, 37
complimentary function, 17,37
general solution, 18
justification of technique, 35
linear with constant coefficients, 17
particular integral, 18
using substitutions, 21

