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CALCULUS 

 

Before the exam you should know:   
 The main ideas are: 

 • 

• 

• 

• 

• 

That you can differentiate the trig functions, the 
hyperbolic trig functions and their inverses.  
That you can apply the standard rules for differentiation 
(product rule, quotient rule and chain rule) to functions 
which involve the above. 
That you can integrate trig functions and hyperbolic trig 
functions. 
That you can integrate, arcsin(x), arccos(x), arctan(x), 
arccot(x), arsinh(x), arcosh(x) etc using integration by 
parts. 
Your trig identities and hyperbolic function identities and 
how to use them in integration problems. Particularly get 
familiar with useful substitutions to make for certain 
problems. 

• 

• 

Calculus using inverse trig 
functions & hyperbolic trig 
functions and their inverses. 
Maclaurin series 

 
Differentiating the  
Inverse Trig Functions 
 

 
 
 
 
 
 
 
 

x

y

1.5-1.5

1.5

-1.5

x

y

10-10

1

-1

It is important to be aware of what the range is for each of these, namely:  

arcsin
2 2
π π

− ≤ ≤  ,    0 arccos π≤ ≤ ,  arctan
2 2
π π

− ≤ ≤  

 
Standard Calculus of Inverse Trig and Hyperbolic Trig Functions 
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=
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=
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−

=
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2
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1
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2
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1

1

y x
dy
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=

=
+

 
2

ar cosh( )
1

1

y x
dy
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=

=
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2 2

1 1 arctan x c
x a a a

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠∫  
2 2

1 arcsin x c
aa x

⎛ ⎞= +⎜ ⎟
⎝ ⎠−

∫  2 2

1 ar cosh x c
ax a

⎛ ⎞= +⎜ ⎟
⎝ ⎠−

∫  

2 2

1 ar sinh x c
ax a

⎛ ⎞= +⎜ ⎟
⎝ ⎠+

∫  
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Calculus using these functions 
The examples below are very typical and show most of the common tricks. Note – details of all substitutions 
have been omitted, make sure you understand how to do them in this case and also in the case of a definite 
integral. 

2 2

1 1 1 1 2arsinh
2 24 16 32 ( 2) 4

xdx dx c
x x x

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠+ + + +∫ ∫• 

2
+

• 

 

2 2
2

16
4 4 1 4 1 4 4 6 16arcsin arcsin

3 3 3 321 2155 3 9 21 1
9 3 36 6

x
xdx dx dx c c

xx x x x

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠= = = ⎜ ⎟ + = ⎜ ⎟
⎝ ⎠+ − ⎜ ⎟⎛ ⎞ ⎛ ⎞− − ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ +

• 

 

2 2

3 3 1 3 arcosh
2 22 4 10 ( 1) 6

xdx dx c
x x x

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠+ − + −∫ ∫

1
6

+

• 

 

 
2

4

2arcosh( )
1

dy xy x
dx x

= ⇒ =
−

 (to see this use the chain rule, set 2z x=  and then dy dy dz
dx dz dx

= ). 

Some useful integration tricks 
Splitting up an integration:  e.g. 

5 5 5

2 2 2
1 1 1

5 5
4 4

x xdx dx dx
x x x
+

= +
+ + +∫ ∫ ∫ 4

 

By inspection: e.g. Since  gives 2ln( 4)x + 2

2
4

x
x +

when differentiated, we have 2
2

1 ln( 4)
4 2

x dx x c
x

= +
+∫ +  or 

since 
1

2 2( 1)x +  gives 
1

2 2( 1)x x
−

+  when differentiated, we have 2

2
1

1
x dx x c

x
= + +

+∫  

Using clever substitutions: e.g. the substitution sinh( )u x=  will help you with 2 1x dx+∫ . 
 

Maclaurin Series 
The Maclaurin expansion for a function f(x) as far as the term in nx looks as follows. 
 

2 3
( )f ( ) f (0) f (0) f (0) f (0) ... f (0)

2! 3! !

n
nx x xx x

n
′ ′′ ′′′≈ + + + + +  

The Maclaurin series is obtained by including infinitely many terms (i.e. not terminating the sum as above). It 
may only be valid for certain values of x. Examples include: 

3 5 7

sin ...
3! 5! 7!
x x xx x= − + − +  which is valid for all x, 2 31 1 2 4 8 ...

1 2
x x x

x
= + + + +

−
 which is valid only when 

1
2

x < , note that this second example is the same as the binomial expansion of ( ) 11 2x −− . 
 

Useful tips 
You can find the Maclaurin series of, e.g. f(2x),  by taking the series for f(x) and replacing the x’s with 2x. • 

• 

• 

If g is the derivative of f then you can find the Maclaurin series for g by differentiating the one for f term by 
term. 
Likewise, if g is the integral of f then you can find the Maclaurin series for g by integrating the one for f 
term by term (caution – don’t forget the constant of integration, this will be g(0)). 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching each 
specification exactly.  
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COMPLEX NUMBERS 

 

Before the exam you should know:  
 
• How to multiply and divide complex numbers in polar 

form. 
 

• What de Moivre’s theorem is and how to apply it. 
 

• About the exponential notation  
cos jsinje θ θ θ= + , jjz x y re θ= + =  

 

• How to apply de Moivre’s theorem to finding multiple 
angle formulae and to summing series. 

 

• About the n nth roots of unity, including how to 
represent them on an Argand diagram. 

The main ideas are: 
 
• 

• 
• 

• 

De Moivre’s Theorem and 
its applications 
Exponential notation 
Using both of the above to 
get formulae by summing 
C+jS series 
nth roots of complex 
numbers 

De Moivre’s Theorem 
 

De Moivre’s Theorem states that ( )cos jsin cos jsinn n nθ θ θ+ = + θ for any integer n. Some applications of 
this are shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exponential notation for complex numbers 
Exponential notation begins with j cos jsine θ θ θ= + . This means that any complex number, z, can be written 
in polar form as jjz x y re θ= + =  where r is the modulus of z and θ is the argument of z. 

Example 1 Evaluate . ( )121 j+
Solution The first thing to do is to write 1 j+ in polar 

form. This is just 1 j 2 cos jsin
4 4
π π⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
 

( ) ( )
( )
( )

12
1212Therefore 1 j 2 cos jsin

4 4
64 cos3 jsin 3

64 cos jsin
64( 1 0)

64

π π

π π

π π

⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

= +

= +

= − +
= −

 

Example 2 Express 6sin θ in terms of multiple 
angles. 
Solution If cos js inz θ θ= +  then 2 j 1s in z zθ −= − . 
So 

( ) ( )

( ) ( )

66 6 1

6 5 1 4 2 3 3 2 4 5

6 6 4 4 2 2

2 j sin

6 15 20 15 6

6 15 20

2cos6 12cos4 30cos2 20

z z

z z z z z z z z z zz z

z z z z z z

θ
6

θ θ θ

−

− − − − −

− − −

= −
−= − + − + − +

= + − + + + −

= − + −
 
Therefore,  

664sin 2cos6 12cos4 30cos2 20θ θ θ θ− = − + −  
 

        

6 20 2cos6 12cos4 30cos2sin
64

10 cos6 6cos4 15cos2
32

θ θ θθ

θ θ θ

− + −
=

− + −
=

. 

Note: in example 2 on the right it is typical to be 
asked to go on to integrate sin6θ . De Moivre’s 
theorem can also be used to express multiple angles in 
terms of powers of the trig functions in a very 
straightforward way. 
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 Example (of using the exponential notation and De Moivre’s theorem to sum C+jS.) 
i. Show that ( )( )j j2 2 5 4coe eθ θ sθ−+ + = + . 

ii. Let 2 3 4

sin sin 2 sin 3 sin 4 .....
2 2 2 2

S θ θ θ θ
= − + − +  

By considering C  where j

 

 
S− 2 3 4

cos cos2 cos3 cos41 ...
2 2 2 2

C θ θ θ θ
= − + − + −  show that 2sin

5 4cos
S θ

θ
=

+
. 

Solution 
( ) ( )

( )
( ) ( )

 

( )

j j j j j j

j j

i) 2 2 4 2 2

5 2

5 2 cos jsin cos( ) jsin( )

5 2 cos jsin cos jsin
5 2 (2cos )
5 4cos .

e e e e e e

e e

θ θ θ θ θ θ

θ θ 

 

 

 

 

 

 

 

 

 

nth roots of complex numbers 
 
The non-zero complex number (cos jsin )r θ θ+ has n 
different nth roots, which are: 
 

1 2 2cos jsinn k kr
n n

θ π θ π⎛ + + ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
,  

where k = 0, 1, 2, …, n – 1. 
 
nth roots of complex numbers are best thought about 
geometrically, the diagram shows the 5th roots of 3+3j. 
 
You should be able to express these roots in polar form 
using the exponential notation. 

 
  

θ θ θ

θ θ θ θ
θ

θ

θ

− − −

−

+ + = + + +

= + +

= + + + − + −⎡ ⎤⎣ ⎦
= + + + −

= + ×
= +

( ) ( )

2 2 3 3

2 3

2 3

2 3

cos sin cos2 sin2 cos3 sin3ii)  j 1 j j j ...
2 2 2 2 2 2

cos jsin cos2 jsin 2 cos3 jsin 31 ...
2 2 2

cos jsin cos jsincos jsin1 ...  
2 2 2

cos jsin1
2

C S θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θθ θ

θ θ

− = − − + + − − +

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

+ ++⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

+⎛ ⎞= − ⎜
⎝

+⎟
⎠

2 3

2 3j j j

cos jsin cos jsin ...
2 2

1 ...
2 2 2

e e eθ θ θ

θ θ θ θ+ +⎛ ⎞ ⎛ ⎞+ −⎟ ⎜ ⎟ ⎜ ⎟
⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+

 

This is just a geometric series with first term 1 and common ratio 
j

2
e θ

− . Its sum is given by  

 
2 3j j j

jj

1 21 ...
2 2 2 2

1
2

e e e
ee

θ θ θ

θθ

⎛ ⎞ ⎛ ⎞
− + − + = =⎜ ⎟ ⎜ ⎟ +⎛ ⎞⎝ ⎠ ⎝ ⎠ − −⎜ ⎟

⎝ ⎠

.  

Now the real and imaginary parts of j

2
2 e θ+

 need to be calculated. Part i) is useful because it gives   

 
( ) ( )jj

j j j

2 2 2 2 cos jsin2 2 2j
2 2 2 5 4cos 5 4cos

eeC S
e e e

θθ

θ θ θ

θ θ
θ θ

−−

−

+ + −⎛ ⎞+⎛ ⎞− = = = =⎜ ⎟⎜ ⎟+ + + + +⎝ ⎠⎝ ⎠
. 

Equating imaginary parts gives 2sin
5 4cos

S θ
θ

=
+

. 

 

real axis

imaginary axis 

3-3

3 

-3 

1z  

2z  

3z  

4z  
5z  

2
5
π

 

3 3 j+  
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HYPERBOLIC TRIG FUNCTIONS 

 

The main ideas are: 
 

Before the exam you should know:  
 

The Hyperbolic Trig Functions 
 
These are defined as: 

sinh( )
2

x xe ex
−−

= , cosh( )
2

x xe ex
−+

= , 

sinh( )tanh( )
cosh( )

x x

x x

x e ex
x e e

−

−

−
= =

+
 .  

For example, 
ln10 ln10

110 9910sinh(ln10)
2 2

e e− −−
= =

20
= . 

 
The Inverse Hyperbolic Trig Functions 
 
Just as the hyperbolic trig functions are defined in terms of ex, their inverses can be expressed in term of logs. In 

fact 2arcosh( ) ln( 1),x x x= + −  2arsinh( ) ln( 1)x x x= + + , 1 1artanh( ) ln
2 1

xx
x

+⎛= ⎜ −⎝ ⎠
⎞
⎟ . You should be able to 

prove (and use) all of these. Here is the proof that 2arcosh( ) ln( 1)x x x= + − . 

Let , then ar cosh( )y x= cosh( )
2

y ye ex y
−+

= = . Rearranging this gives 0 2y ye x e−= − + . Multiplying this by ey 

gives 0 . This is a quadratic in e2 2 1y ye xe= − + y and using the formula for the roots of a quadratic gives 
2

22 4 4 1
2

y x xe x± −
= = ± x − . Taking logs gives 2ar cosh( ) ln( 1)y x x x= = ± − . The value corresponding to 

the minus sign is rejected here, you should know why. 
These expressions can be used to give exact values of the inverse hyperbolic trig functions in term of logs. For 

example, 
25 5 5 5 16arcosh ln 1 ln ln(3)

3 3 3 3 9

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − = + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

• 

• 

• 

Definitions of the hyperbolic 
trig functions and their 
inverses.  
Working with the hyperbolic 
trig functions 
Identities involving 
hyperbolic trig functions 

• The definitions sinh( )
2

x xe ex
−−

= , cosh( )
2

x xe ex
−+

= , 

sinh( )tanh( )
cosh( )

x x

x x

x e ex
x e e

−

−

−
= =

+
 

• That you can prove that 
2 2arccosh( ) ln( 1),arsinh( ) ln( 1)x x x x x x= + − = + +  

        1 1artanh( ) ln
2 1

xx
x

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
• 

• 

 

Your trig identities and hyperbolic function identities, 
experience will tell you when it is best to work in the 
exponential form when dealing with equations. 

 
How to prove hyperbolic identities from the definitions 

sinh( ) ,cosh( )
2 2

x x xe e e ex x
x− −− +

= = , it’s worth 

practicing indices for this. 
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Graphs of the Hyperbolic Trig Functions 
 

x

y

1-1

1

-1

2

tanh( )

sech ( )

y x
dy x
dx

=

=  

 
 
 
 
 
 
 
 
 
 
 
Graphs of the Inverse Hyperbolic Trig Functions 

x

y

4-4

8

1

x

y

4-4

4

-4

cosh( )

sinh( )

y x
dy x
dx

=

=

sinh( )

cosh( )

y x
dy x
dx

=

=  

 You must also know the graphs of the 
inverse hyperbolic trig functions, 
arsinh, arcosh and artanh. As for any 
function these are obtained by  
reflecting the respective graphs of sinh, 
cosh and tanh in y = x. The examples of 
arsinh and arcosh are shown here. 
Notice that arcosh(x) is only defined 
for x greater than or equal to 1. 
 

 
 

 
 

 
 
 

Identities Involving Hyperbolic Trig Functions 
 
Identities involving hyperbolic trig functions include: 

2 2 2 2cosh sinh 1,   cosh(2 ) cosh sinh ,   sin( ) sinh( )cosh( ) cosh( )sinh( )u u u u u u v u v u− = = + + = + v  
The only difference between a hyperbolic trig identity and the corresponding standard trig identity is that the 
sign is reversed when a product of two sines is replaced by a product of two sinhs. This is called Osborn’s Rule. 
 
You can prove any hyperbolic trig identity using their definitions and should be able to do this for the exam. 
 
Equations Involving Hyperbolic Trig Functions 
 
Example   Solve the equation 13  giving your answer in terms of natural logarithms. cosh 5sinh 20x x+ =

Solution 13cosh 5sinh 20 13 5 20
2 2

x x x xe e e ex x
− −⎛ ⎞ ⎛ ⎞+ −

+ = ⇒ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

   18 8 40 0x xe e−⇒ + − =
  ( ) ( )29 20 4 0 9 2 2x x x xe e e e⇒ − + = ⇒ − − = 0  

  2 or 2
9

x xe e⇒ = =  

  2ln or ln 2 
9

x x⎛ ⎞⇒ = =⎜ ⎟
⎝ ⎠
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INVESTIGATION OF CURVES 
Before the exam you should know:  

 
The main ideas in this topic are: 
• 

• 

• 

• 

The cartesian, parametric and 
polar forms of equations 
Symmetry and periodicity of 
curves, asymptotes, nodes and 
loops 
Calculus techniques for curves in 
Cartesian, parametric and polar 
form 
Conic sections 

• 

• 

How to use your graphic calculator efficiently. 
• How to convert between different forms of the 

equations. 
• The links between the equation of a curve and its 

shape.  
• Using calculus for curves given in Cartesian and 

parametric and polar form and understanding what 
they will show. 
The standard equations of conics in Cartesian and 
parametric form. 

Example: convert the parametric equations  
x = 4sect, y = 5tant into (a) Cartesian form (b) polar 
form 
 
(a) x2 = 16 sec2t                       y2 = 25 tan2t 

     x2 = 16 sec2t                     
2

25
y = tan2t 

   
2

16
x  =  1 + tan2t 

   
2

16
x  = 1 +

2

25
y    ⇒  

2

16
x  - 

2

25
y = 1 

(b) using x2 + y2 = r2  gives  16 sec2t  + tan2t = r2 

                                       16(1 + tan2t) + tan2t = r2 

  41 tan2t + 16 = r2

Defining a curve  
Types of equation: 
  - Cartesian - Parametric - Polar 
To convert from parametric to Cartesian,  
you need to eliminate the parameter.  
It may be possible to obtain a simple relationship 
between the parameter, x and y. This can then be 
substituted into the equation for x or y. If the 
parametric form involves trig functions, you may be 
able to use identities like sin2θ + cos2θ = 1 and tan2θ + 
1 = sec2θ 
To convert between polar and Cartesian form, use the 
relationships x = rcosθ, y = rsinθ and  
x2 + y2 = r2

Features of curves 
The important features of curves to recognise are 
• Symmetry and periodicity. 
• Vertical, horizontal and oblique asymptotes. 
• Cusps, loops and dimples. 
• Nodes (points where a curve crosses over 

itself). 

y

• Nodes (points where a curve crosses over 
itself). 

 

The Hyperbola:  x = a sect ,  y= b tant     
 has oblique asymptotes. 
 
Epicycloid:  x = kacost – a cos kt,  

       y= kasint - asinkt   
y 

 
This example has K = 6.  
It has 5 dimples.  

 
Symmetry and asymptotes 
Vertical asymptotes are the values of x which make the denominator zero when the equation is in Cartesian form. 
Horizontal and oblique asymptotes depend on the behaviour of the curve as x→± ∞. The clue is in the orders of the 
numerator and denominator of the graph: 
• If the order of the denominator is greater than the order of the numerator, then y→0 as x→ ∞, and so the x axis is a 

horizontal asymptote. 
±

• If the order of the denominator is equal to the order of the numerator, then y→k for some constant k as, x→± ∞ and the 
line y = k is a horizontal asymptote.  

• If the order of the denominator is less than the order of the numerator, then y numerically increases without limit as 
x→ ∞ and there is an obli± que asymptote.  
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Using calculus 
For curves given in cartesian and parametric form calculus techniques are used to find  
• the equations of tangents and normals; 
• the maximum and minimum values of 

 
 
 x and y  

• the maximum and minimum distances of a curve from the origin. 

For curves given in polar form calculus techniques are used to find  
• the maximum and minimum distance of the curve from the pole; 
• the points on the curve where the tangent is parallel or perpendicular to the initial line. 

 

2 2

2 2 1x y
a b

+ =
2 2

2 2 1x y
a b

− =

Conic sections 

Example: determine the equations of the vertical and oblique asymptotes of the curve 
23 7
3 1

x xy
x
+ +

=
+

4
 

Solution: Vertical asymptote 3x +1= 0  x = ⅓ ⇒
Oblique asymptote  (Ax + B)(3x + 1) +C = 3x2 + 7x + 4   2Ax⇒ 2 + (2B-A)x + (C-B) = 2x2 + 4x + 3 

Equating coefficients gives A = 1,  B = 2, C=2. Hence y = x + 2 + 
2

3 1x +
 so the oblique asymptote is the line  y = x + 2 

The conics can be thought of as the curves given by slicing through a double cone. They can be defined in terms of 
the locus of a point P in relation to a fixed point S (the focus) and a fixed line d (the directrix). A conic is the locus of 
P such that the ratio of distance of P from S and the distance of P from d is a constant e (the eccentricity).  
 

 Parabola 
e=1 

Ellipse 
0<e<1 

Hyperbola 
e>1 

Rectangular hyperbola 
e=√2 

Cartesian form y2 = 4ax 
 

  xy = c2

Parametric form x=2at2

y= 2at 
x = acost 
y = bsint 

x = asect 
y =btant 

 

x = ct 
 
 
cy =
t

 

Example:  A curve has parametric equations 
2

2 2

2 ,
1 1

t tx y
t t

= =
+ +

.  

(i) Use a graphical calculator to draw the curve for  −10 ≤ t ≤ 0 
(ii) The curve is part of a conic. Name the conic.         
(iii) Write down the co-ordinates of the centre point of the conic and of the points where it crosses the y-axis.  

(iv) Show that for the curve S, 2

d
d 1
y t

t
=

−x
.             

(v) Find the values of t at the points where the curve is parallel to the y-axis, and the Cartesian coordinates of these points.      
  

Solution:   
i) 

   
ii)  An ellipse 
iii) Centre point (0, ½);   the curve cuts the y axis at (0, 0) and (1, 0) 

iv) 
2

2 2

2(1 ) 2 .2
(1 )

dx t t t
dt t

+ −
=

+
 = 

2

2 2

2 2
(1 )

t t
t
−
+

;    
2 2

2 2

2 (1 ) .2
(1 )

dy t t t t
dt t

+ −
=

+

2 2

2

2 2

2
(1 )
2 2
(1 )

t
dy t

tdx
t

+=
−
+

 = 2 2

2
(1 )

t
t+

 ⇒  = 21
t
t−

 

 v) 
dy
dx

= ∞ ⇒when 1 – t2 = 0  t = ± 1.  

     When t = 1,  x = 1,  y = ½.    When t = -1,  x = -1,  y = ½. Co-ordinates are (1, ½) and (-1, ½) 
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REVISION SHEET – FP2 (MEI) 
 

MATRICES 

 

Before the exam you should know:  
 

The main ideas are: 
 • 

• 

• 

• 

• 

• 

• 

How to find the determinant of a 3×3 matrix and 
how to invert a 3×3 matrix whose determinant is 
not zero. 
The language of matrices – singular, non-singular, 
cofactor, adjugate. 
How to solve 3 simultaneous equations in 3 
unknowns. What to expect when the underlying 
coefficient matrix is zero. How to interpret each 
case geometrically. 
What is meant by an eigenvalue and an 
eigenvector of a 3×3 matrix and how to find them. 
How to diagonalise a matrix M where possible. In 
other words how to find a matrix S such that        
S-1MS is a diagonal matrix. 
Applications of diagonalising matrices, such as 
finding large powers of a matrix. 
The Cayley Hamilton Theorem and its 
applications.

• 
• 

• 

• 

The inverse of a 3 by 3 matrix 
Solving 3 simultaneous equations 
in 3 unknowns, and interpreting 
the solutions geometrically 
Finding eigenvalues and 
eigenvectors 
Diagonalisation and applications 

The Determinant of a 3×3 matrix 
 

If  then  
1 2 3

1 2 3

1 2 3

M
a a a
b b b
c c c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
( ) ( ) ( )1 2 3 3 2 2 1 3 3 1 3 1 2 2 1det M a b c b c a b c b c a b c b c= − − − + − . This is “expanding by the first row”, it is possible to expand 

by any row or column and you should know how to do this.  
 

The Inverse of a 3×3 matrix 
 

If  then 
1 2 3

1 2 3

1 2 3

M
a a a
b b b
c c c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1 1
1

2 2 2

3 3 3

1M
det M

A B C
A B C

A B C

−

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

where A1 for example is the determinant of the 2×2 matrix which is left after removing the column and row 
containing a1 from M, BB3 is the determinant of the 2×2 matrix which is left after removing the column and row 
containing b3 from M etc. 
 

Matrices and Simultaneous Equations 
 
The three simultaneous equations in three variables    

                             

are equivalent to the matrix  equation where . 
1 2 3

1 2 3

1 2 3

M
a a a
b b b
c c c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

M
x d
y d
z d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 1 1

2 2 2

3 3 3

a x b y c z d
a x b y c z d
a x b y c z d

+ + =
+ + =
+ + =

1

2

3
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⎟

⎞
⎟

If det M ≠ 0, M is non-singular, M-1 exists and the equations have a unique solution. 
If det M = 0, M is singular, M-1 does not exist and either: 
 
(i) the equations are inconsistent and have no solutions 
(ii) the equations are consistent and have infinitely many solutions. 
 
The three equations may be regarded as the equations of three planes in three-dimensional place and you should 
be able to interpret the solutions in terms of the configurations of these planes. 
 

Eigenvalues and Eigenvectors 
For a given matrix M, an eigenvector is a vector which is mapped to a multiple of itself by M. For example since 
 

4 2 2 10 2
5

1 3 1 5 1
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

2
1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is an eigenvector of  with eigenvalue 5. 
4 2
1 3
⎛ ⎞
⎜
⎝ ⎠

 
To find eigenvectors of a matrix M 
(i) Form the characteristic equation: det(M - λI) = 0 
(ii) Solve the characteristic equation to find the eigenvalues, λ 
(iii) For each eigenvalue λ find an eigenvector v  ≠ 0 by solving Mv = λv 
 
Diagonalisation 
A diagonal matrix is a square matrix in which all the entries off the top left to bottom right diagonal are zero. If 
M is any matrix and S is a matrix whose columns are eigenvectors of M then, if S is invertible, S-1MS is a 
diagonal matrix.  
 
Suppose S-1MS = D where D is a diagonal matrix. Then Dn = (S-1MS)n = (S-1MS) (S-1MS)… (S-1MS)= S-1MnS. 
This gives Mn = SDnS-1 which is an easy way to calculate high powers of M. 
 
The Cayley Hamilton Theorem 
The Cayley Hamilton Theorem says that a matrix satisfies its own characteristic equation. The following 
example shows what this means. 

Suppose . The characteristic equation of M is 
1 2

M
1 4
⎛

= ⎜
⎝ ⎠

1 2
0

1 4
λ

λ
−

=
−

 which is . 2 5 2λ λ− + = 0

⎞
⎟
⎠

I

 
Now we substitute λ = M into the characteristic equation. This gives (notice how 2 becomes 2I below). 

2M 5M 2I 0− + =  i.e. .  
21 2 1 2 1 0 3 10 5 10 2 0 0 0

5 2
1 4 1 4 0 1 5 18 5 20 0 2 0 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛

− + = − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

 
The Cayley Hamilton Theorem can be used to calculate high powers of a matrix quickly. In the above example 
we have . This gives  2M 5M 2= −

( ) ( )
( )

4 2M 5M 2I 5M 2I 25M 20M 4I

25 5M 2I 20M 4I
= 105M 46I

= − − = − +

= − − +

−
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POLAR COORDINATES  

θ = 0 

θ = 
12
π  

θ = 
6
π  

θ = 
4
π  

θ = 
3
π  

θ = 5
12
π  θ = 

2
π  θ = 7

12
π  

θ = 2
3
π  

θ = 3
4
π  

θ = 5
6
π  

θ = 5
12
π  

θ = π  

θ = –
12
π  

θ =– 
6
π  

θ =– 
4
π  

θ = –
3
π  

θ =– 5
12
π  θ = –

2
π  θ = – 7

12
π  

θ = – 2
3
π  

θ = – 3
4
π  

θ = – 5
6
π  

θ = – 5
12
π  

⎛ ⎞
⎜ ⎟
⎝ ⎠

8,
3
π

 

⎛ ⎞
⎜ ⎟
⎝ ⎠

5, -
12
π

 

⎛ ⎞
⎜ ⎟
⎝ ⎠

3,
6

5π
 

⎛ ⎞
⎜ ⎟
⎝ ⎠
13, -

2
π

 

 

Before the exam you should know:  The main ideas are: 
 

What Polar Coordinates are • 
• 

• 

• 

• How to change between polar coordinates (r, θ) and 
Cartesian coordinates (x, y) use x = r cosθ, y = r 

sinθ, r = 2

Conversion between 
Cartesian and Polar 
Coordinates 

2x y+  and tan y
x

θ = .  

• You’ll need to be very familiar with the graphs of 
 y = sin x, y = cos x and y = tan x and be able to give 
exact values of the trig functions for multiples of    

6
π  and 

4
π . 

Curves defined using Polar 
Coordinates 
Calculating areas for curves 
defined using Polar 
Coordinates 

• How to sketch a curve given by a polar equation. 

The area of a sector is given by 21
2

r d
β

α

θ∫ . • 

How Polar Coordinates Work 
You will be familiar with using Cartesian Coordinates (x, y) to specify the position of a point in the plane. Polar 
coordinates use the idea of describing the position of a point P by giving its distance r from the origin and the 
angle θ  between OP and the positive x-axis. The angle θ is positive in the anticlockwise sense from the initial 
line. If it is necessary to specify the polar coordinates of a point uniquely then you use those for which r > 0 and 
–π < θ  ≤ π.  
It is sometimes convenient to let r take negative values with the natural 
interpretation that ( – r, θ) is the same as (r, θ + π). 

 
It is easy to change between polar 
coordinates (r, θ) and Cartesian 
coordinates (x, y) since x = r cosθ, 
y = r sinθ, r = 2 2x y+  and 

tan y
x

θ = . You need to be careful 

to choose the right quadrant when 
finding θ, since the equation 

tan y
x

θ =  always gives two values 

of θ, differing by π. Always draw a 
sketch to check which one of these 
is correct. 
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The Polar Equation of a Curve  
The points (r, θ) for which the values of r and θ are linked by a function f form a curve whose polar equation is r 
= f(θ). A good way to draw a sketch of a curve is to calculate r for a variety of values of θ. 
 

Example Sketch the curve which has polar equation  r = (1 2 cos )a θ+ for 3
4

3
4π θ− ≤ ≤ π , where a is a 

positive constant.  
θ 

3
4
π

−
2
π

−  
4
π

−  0 
4
π  

2
π  3

4
π  

r 0 a 2a ( )1 2a +  2a a 0 

 
Solution Begin by calculating the value or r 
for various values of θ. This is shown in the 
table. The curve can now be sketched. 

 
 
 
 
 
 
 
 
 
 
 
The Area of a Sector  

The area of the sector shown in the diagram is 21
2

r d
β

α

θ∫  

Example  
A curve has polar equation  r = (1 2 cos )a θ+ for 3 3

4 4π θ π− ≤ ≤ , 
where a is a positive constant. Find the area of the region enclosed by 
the curve.  

Solution The area is clearly twice the area of the sector given by 
3
40 θ π≤ ≤ . Therefore the area is 

It’s a good exercise to try to spot the 
points given in the table above in 
polar coordinates on the curve shown 
here. 
 
For example the point ( )( )  

is here. 

1 2 ,0a +

 Note Even though r can be negative for 

certain values of θ, 21
2

r is always 

positive, so there is no problem of 
‘negative areas’ as there is with curves 
below the x-axis in cartesian coordinates.  
 
Be careful however when considering 
loops contained inside loops. 

( ) ( )

( )

( )

3 3 3
4 4 422 2 2 2

0 0 0
3
4

2

0
3
42

0

2

12 1 2 cos 1 2 2 cos 2cos
2

2 2 2 cos cos2

sin 22 2 2 sin
2

3 1
2

r d a d a d

a d

a

a

π π π

π

π

θ θ θ θ θ θ

θ θ θ

θθ θ

π

= + = + +

= + +

⎡ ⎤= + +⎢ ⎥⎣ ⎦

= +

∫ ∫ ∫

∫
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