

MEI Structured Mathematics

Module Summary Sheets

FP2, Further Methods for Advanced Mathematics

(Version B: reference to new book)

Topic 1: Calculus

Topic 2: Polar Coordinates

Topic 3: Complex Numbers

Topic 4: Power Series

Topic 5: Matrices

Option 1: Hyperbolic Functions

Option 2: Investigation of curves

Purchasers have the licence to make multiple copies for use within a single establishment

© MEI April, 2006

Summary FP2 Topic 1: Calculus

References: Chapter 1 Pages 1-11 **Inverse Trigonometrical Functions**

 $y = \arcsin x$ is the inverse function of $y = \sin x$.

$$\frac{d(\arcsin x)}{dx} = \frac{1}{\sqrt{1 - x^2}}$$
$$\frac{d(\arccos x)}{dx} = -\frac{1}{\sqrt{1 - x^2}}$$
$$\frac{d(\arctan x)}{dx} = \frac{1}{1 + x^2}$$

Exercise 1B Q. 2, 4, 6(ii), 7(ii)

References: Chapter 1 Pages 11-14

Example 1.6 Page 12

Exercise 1C Q. 1(i),(ii), 2(i),(ii) Integration involving Inverse Functions

$$\frac{d(\arcsin x)}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

$$\Rightarrow \int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + c$$

$$\frac{d(\arctan x)}{dx} = \frac{1}{1 + x^2}$$

$$\Rightarrow \int \frac{1}{1 + x^2} dx = \arctan x + c$$

This can be seen by making the substitution

 $x = \tan \theta \Rightarrow \frac{dx}{d\theta} = \sec^2 \theta$ and $1 + x^2 = 1 + \tan^2 \theta = \sec^2 \theta$ $\Rightarrow \int \frac{1}{1 + x^2} dx = \int \frac{\sec^2 \theta}{\sec^2 \theta} d\theta$ $= \int d\theta = \theta + c = \arctan x + c$

When making a substitution to complete a definite integral, either convert the limits to the values of the function being used or turn your integrand back into a function of *x* and then substitute the limits.

References: Chapter 1 Pages 15-17

Harder integrals

If the function in the denominator is of the form $ax^2 + bx + c$ then completing the square allows the procedure above to be used.

Example 1.9 Page 15

E.g.
$$x^2 + 4x + 7 = (x+2)^2 + 3$$

So $I = \int \frac{1}{x^2 + 4x + 7} dx = \int \frac{1}{(x+2)^2 + 3} dx$

Substitute $(x+2) = \sqrt{3} \tan \theta$

Exercise 1D Q. 1(i), 4(i),(v), 6(i) $\Rightarrow (x+2)^2 + 3 = 3\tan^2\theta + 3 = 3\sec^2\theta$ and $dx = \sqrt{3}\sec^2\theta d\theta$ $\Rightarrow I = \int \frac{1}{(x+2)^2 + 3} dx = \int \frac{\sqrt{3}\sec^2\theta d\theta}{3\sec^2\theta} = \frac{1}{3}\sqrt{3}\theta + c$

$$= \frac{1}{\sqrt{3}}\arctan\left(\frac{x+2}{\sqrt{3}}\right) + c$$

FP2; Further Methods for Advanced Mathematics Version B: page 2

Competence statements c1, 2, 3

© MEI

E.g. Find
$$\frac{d}{dx}(\arcsin 2x)$$
.
 $u = 2x \Rightarrow \frac{du}{dx} = 2$
 $\Rightarrow \frac{d}{dx}(\arcsin 2x) = \frac{d}{du}(\arcsin u) \cdot \frac{du}{dx}$
 $= \frac{1}{\sqrt{1 - u^2}} \cdot 2 = \frac{2}{\sqrt{1 - 4x^2}}$

E.g. Find
$$\int_{0}^{1/2} \frac{1}{1+4x^2} dx$$
.

Note first that
$$\frac{d(\arctan x)}{dx} = \frac{1}{1+x^2} \Rightarrow \int \frac{1}{1+x^2} dx = \arctan x + c$$

Substitute $2x = \tan \theta$

$$\Rightarrow 2 \frac{dx}{d\theta} = \sec^2 \theta \text{ and } 1 + 4x^2 = 1 + \tan^2 \theta = \sec^2 \theta$$

When x = 0, $\tan \theta = 0 \Rightarrow \theta = 0$

When
$$x = \frac{1}{2}$$
, $\tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4}$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{1}{1+4x^{2}} dx = \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \frac{\sec^{2} \theta}{\sec^{2} \theta} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} d\theta$$
$$= \frac{1}{2} \left[\theta\right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{2}$$

E.g. Find
$$\int \frac{x(x-2)}{(x+1)(x^2+2)} dx$$

$$\frac{x(x-2)}{(x+1)(x^2+2)} = \frac{1}{x+1} - \frac{2}{x^2+2}$$

(This is found by partial fractions, covered in C4.)

$$\Rightarrow \int \frac{x(x-2)}{(x+1)(x^2+1)} dx = \int \left(\frac{1}{x+1} - \frac{2}{x^2+2}\right) dx$$

$$= \int \frac{1}{x+1} dx - 2 \int \frac{1}{x^2 + 2} dx = \ln|x+1| - 2 \cdot \frac{1}{\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + c$$

E.g. Find
$$\int_{1}^{2} \frac{1}{\sqrt{1+2x-x^2}} dx$$
.

$$1 + 2x - x^2 \equiv 2 - (x - 1)^2$$

So let
$$(x-1) = \sqrt{2}u$$

Then
$$1 + 2x - x^2 = 2 - (x - 1)^2 = 2 - 2u^2$$

and
$$dx = \sqrt{2}du$$

When
$$x = 1, u = 0$$
 and $x = 2, u = \frac{1}{\sqrt{2}}$

$$\Rightarrow \int_{1}^{2} \frac{1}{\sqrt{1 + 2x - x^{2}}} dx = \int_{0}^{1/\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2(1 - u^{2})}} du$$

$$= \int_{0}^{1/\sqrt{2}} \frac{1}{\sqrt{(1-u^2)}} du = \left[\arcsin u\right]_{0}^{1/\sqrt{2}} = \frac{\pi}{4}$$

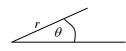
Summary FP2 Topic 2: Polar Coordinates

References: Chapter 2 Page 20 Cartesian coordinates identify a point by an ordered pair (x, y) of distances from two, usually perpendicular, axes which intersect at the **origin**, O.

Polar coordinates identify a point by an ordered pair, (r, θ) where r is the distance from a fixed point, O, called the **pole**, and θ is the angle turned through in an anticlockwise direction from a fixed line through O, called the **initial line**.

The point is uniquely defined providing r and θ are defined such that $r \ge 0$ and $0 \le \theta < 2\pi$. (Angles are usually expressed in radians.)

Exercise 2A Q. 2



References: Chapter 2 Page 21

Conversion between Polars and Cartesians

$$x = r \cos \theta, \quad y = r \sin \theta$$

 $x^2 + y^2 = r^2 \Rightarrow r = \sqrt{x^2 + y^2}$
 $\tan \theta = \frac{y}{x}$

References: Chapter 2 Pages 23-26

Polar Equations of Curves

The polar equation of a curve can be expressed in the form $r = f(\theta)$.

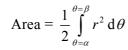
Example 2.1 Page 23

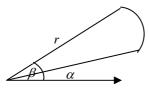
Curves may be sketched by plotting specific points or by considering the value of r over a range of values of θ .

Exercise 2B Q. 1, 2

Area of Sector

References: Chapter 2 Pages 27-28





Exercise 2C Q. 2

FP2; Further Methods for Advanced Mathematics Version B: page 3
Competence statements p1, 2, 3

© MEI

E.g. The point with Cartesian coordinates (3, 4) has polar coordinates (r, θ) where

$$\theta = \tan^{-1} \frac{4}{3} = 0.927 \text{ radians}$$

and $r = \sqrt{3^2 + 4^2} = 5$ (3,4)

The point with cartesian coordinates (1, 1) has polar coordinates $(\sqrt{2}, \frac{\pi}{4})$.

E.g. Sketch the curve $r = 1 + 2\sin\theta$.

As θ increases from $\pi/2$ to π , $\sin \theta$ decreases to 0 and so r decreases to 1

As θ increases from 0 to $\pi/2$, $\sin \theta$ increases to 1 and so r increases to 3

When $\theta = 0$, r = 1.

As θ increases from π to³

As θ increases from $^{3\pi}/_2$ to 2π , $\sin \theta$ increases from -1 to 0 and so r increases to 1, once again through 0, when $\theta = ^{11\pi}/_6$.

 $^{\pi}/_{2}$, $\sin\theta$ decreases to -1 and so r decreases to -1. (Note that there is a point here when r = 0. This is when $\sin\theta = -\frac{1}{2}$, i.e. $\theta = \frac{7\pi}{6}$.)

E.g. Find the area of the sector of the curve $r = 1 + 2\sin\theta$ from $\theta = 0$ to $\pi/2$

Area =
$$\frac{1}{2} \int_{\theta=\alpha}^{\theta=\beta} r^2 d\theta$$

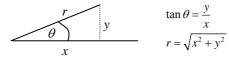
= $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + 2\sin\theta)^2 d\theta$
= $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + 4\sin\theta + 4\sin^2\theta) d\theta$
= $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + 4\sin\theta + 2(1 - \cos 2\theta)) d\theta$
= $\frac{1}{2} [3\theta - 4\cos\theta - \sin 2\theta]_{0}^{\frac{\pi}{2}}$
= $\frac{1}{2} (\frac{3\pi}{2} - 4 \times 0 - 0) - \frac{1}{2} (0 - 4 - 0)$
= $\frac{3\pi}{4} + 2$

Summary FP2 Topic 3: Complex Numbers -1

References: Chapter 3 Pages 32-35

The Polar form of a complex number x + yj is given as (r, θ) where r is the modulus of the complex number and θ is the anticlockwise angle turned through from the positive x (or real) axis.

Exercise 3A Q. 3, 15, 18



To enable this representation to be unique, we define the range of θ to be $-\pi < \theta \le \pi$, where the measurement is usually in radians.

References: Chapter 3 Page 36

Sets of points

The equation $arg(z-p) = k\pi$ is a half line with constant angle $k\pi$ from the point p. The other half represents the equation $\arg(z-p) = (k-1)\pi$.

Exercise 3B Q. 2, 8, 10

Multiplication and division in polar form.

References: Chapter 3 Pages 37-38

If $z_1 = (r_1, \theta_1) = r_1 (\cos \theta_1 + j \sin \theta_1)$ and $z_2 = (r_2, \theta_2) = r_2(\cos\theta_2 + j\sin\theta_2)$ then $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$ $= r_1 r_2 \left(\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2) \right)$ and $\frac{z_1}{z_2} = \left(\frac{r_1}{r_2}, \theta_1 - \theta_2\right) = \frac{r_1}{r_2} \left(\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)\right)$

Exercise 3C Q. 4, 6, 14

> It can also be seen that if $z_1 = (r_1, \theta_1)$ and $z_2 = (r_2, \theta_2)$ then $|z_1 z_2| = |z_1||z_2|$

and $arg(z_1z_2) = arg(z_1) + arg(z_2)$

References: Chapter 3

de Moivre's Theorem

If $z = (\cos \theta + j\sin \theta)$

If $z = (r, \theta) = r(\cos \theta + j\sin \theta)$ and n is any integer

Pages 40-41

Exercise 3D

Q. 1(i), 2(i), 3(i)

 $z^{n} = (r^{n}, n\theta) = r^{n} (\cos n\theta + j\sin n\theta)$

References: Chapter 3 Pages 42-43 Multiple angles using de Moivre's Theorem

and n is any integer $z^{n} = (\cos\theta + j\sin\theta)^{n} = (\cos n\theta + j\sin n\theta)$

Example 3.2 Page 41

The powered bracket should be expanded using the binomial theorem (and using $j^2 = -1$) and then equate real and imaginary parts.

Exercise 3E Q. 3,5(i)

FP2; Further Methods for Advanced Mathematics

Version B: page 4

Competence statements j1, 2, 3, 4

© MEI

E.g. The point (3 + 4j) with Cartesian coordinates (3, 4) has Polar coordinates (r, θ) where

$$\theta = \tan^{-1} \frac{4}{3} = 0.927 \text{ radians}$$

$$r = \sqrt{3^2 + 4^2} = 5$$
(3,4)

The point 1 +j has polar coordinates $\left(\sqrt{2}, \frac{\pi}{4}\right)$.

Note the comparison between the polar form of complex numbers and polar coordinates (Topic 2.)

E.g.
$$z_1 = \left(3, \frac{\pi}{4}\right), z_2 = \left(2, \frac{\pi}{3}\right)$$

 $z_1 z_2 = \left(6, \frac{7\pi}{12}\right), \frac{z_1}{z_2} = \left(1.5, -\frac{\pi}{12}\right)$

E.g. If
$$z = \left(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}\right)$$

then $z^8 = \left(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}\right)^8$
 $= \left(\cos 2\pi + j\sin 2\pi\right) = 1$

Note that the equivalent algebraic form of z is

$$z = \frac{1}{\sqrt{2}} (1+j) \Rightarrow z^8 = \left(\frac{1}{\sqrt{2}}\right)^8 (1+j)^8$$
$$= \frac{1}{16} (1+8j-28-56j+70+56j-28-8j+1)$$
$$= \frac{1}{16} (1-28+70-28+1) = \frac{16}{16} = 1$$

E.g. If
$$z = (\cos\theta + j\sin\theta)$$

$$z^{3} = (\cos\theta + j\sin\theta)^{3} = (\cos3\theta + j\sin3\theta)$$

$$= \cos^{3}\theta + 3j\cos^{2}\theta\sin\theta - 3\cos\theta\sin^{2}\theta - j\sin^{3}\theta$$
So $\cos3\theta = \cos^{3}\theta - 3\cos\theta\sin^{2}\theta$

$$= \cos^{3}\theta - 3\cos\theta(1 - \cos^{2}\theta)$$

$$= 4\cos^{3}\theta - 3\cos\theta$$
and $\sin3\theta = 3\cos^{2}\theta\sin\theta - \sin^{3}\theta$

$$= 3(1 - \sin^{2}\theta)\sin\theta - \sin^{3}\theta$$

$$= 3\sin\theta - 4\sin^{3}\theta$$

Summary FP2 Topic 3: Complex Numbers -2

References: Chapter 3 Pages 45-47

Example 3.6 Page 47

Exercise 3F Q. 1(ii), 4, 6

Complex Exponents

$$e^{j\theta} = \cos\theta + j\sin\theta$$

This comes from the comparison of the infinite series expansions for $\cos\theta, \sin\theta$ and $e^{j\theta}$

i.e. $\cos\theta + i\sin\theta$

$$= \left(1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \dots\right) + j\left(\theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \dots\right)$$

$$= 1 + j\theta - \frac{\theta^{2}}{2!} - j\frac{\theta^{3}}{3!} + \frac{\theta^{4}}{4!} + j\frac{\theta^{5}}{5!} + \dots$$

$$= 1 + (j\theta) + \frac{(j\theta)^{2}}{2!} + \frac{(j\theta)^{3}}{3!} + \frac{(j\theta)^{4}}{4!} + \dots$$

$$= e^{j\theta}$$

In particular: $e^{j\pi} = \cos \pi + j \sin \pi = -1$

Summations using complex numbers

Series expansions involving $\cos\theta$ or $\sin\theta$ may be done using complex numbers, de Moivre's theorem and equating real and imaginary parts.

Exercise 3G Q. 1, 4

References:

Chapter 3

Page 49

References: Chapter 3 Pages 51-56

Example 3.8 Page 53

Exercise 3H Q. 2, 6

Exercise 3I Q. 2, 4

Exercise 3I Q. 9

Exercise 3J Q. 4

© MEI

Complex roots

If $z = r(\cos\theta + j\sin\theta)$, $\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\theta + 2k\pi}{r} + j\sin\frac{\theta + 2k\pi}{r}\right)$

(For the range of the root to be $[0, 2\pi]$, the range of the number must be $[0, 2n\pi]$). For $k = 0, 1, 2, \dots, (n-1)$, these angles are distinct, giving the n nth roots of z.

Since they all have the same modulus, they all lie on the circle $|z| = \sqrt[n]{r}$ and so they form, on an Argand diagram, a regular *n*-gon.

The sum of all nth roots of a complex number is 0.

Method 1.

Consider the complex number z_1 . The *n*th roots are roots of the equation $z^n = z_1$. The sum of roots of this equation is the coefficient of the z^{n-1} term which is zero.

Method 2.

If the n roots are α , β , γ ...then these roots form the vertices of a regular n-gon. Adding complex numbers on the Argand diagram is done by drawing them tracking round a polygon.

In this case the numbers being added track round to the starting point. The "resultant" is therefore zero.

FP2; Further Methods for Advanced Mathematics Version B: page 5 Competence statements j5, 6, 7, 8, 9, 10, 11 E.g. Express $1 - e^{j\theta}$ in the form $a\sin\frac{\theta}{2} \cdot e^{jk\theta}$ $e^{j\theta} = \cos\theta + j\sin\theta \Rightarrow 1 - e^{j\theta} = 1 - \cos\theta - j\sin\theta$ $\cos\theta = 1 - 2\sin^2\frac{\theta}{2} \Rightarrow 1 - \cos\theta = 2\sin^2\frac{\theta}{2}$ $1 - e^{j\theta} = 2\sin^2\frac{\theta}{2} - 2j\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2\sin\frac{\theta}{2}\left(\sin\frac{\theta}{2} - j\cos\frac{\theta}{2}\right)$ $= -2j^2\sin\frac{\theta}{2}\left(\sin\frac{\theta}{2} - j\cos\frac{\theta}{2}\right) = -2j\sin\frac{\theta}{2}\left(j\sin\frac{\theta}{2} - j^2\cos\frac{\theta}{2}\right)$ $= -2j\sin\frac{\theta}{2}\left(\cos\frac{\theta}{2} - j\sin\frac{\theta}{2}\right) = -2j\sin\frac{\theta}{2}e^{j\frac{\pi}{2}\theta}$

E.g. Find the sum of the series $\sin \theta + \frac{1}{2} \sin 2\theta + \frac{1}{4} \sin 3\theta + \dots$

Let
$$S = \sin \theta + \frac{1}{2} \sin 2\theta + \frac{1}{4} \sin 3\theta + \dots$$

and
$$C = \cos \theta + \frac{1}{2}\cos 2\theta + \frac{1}{4}\cos 3\theta + \dots$$

$$\Rightarrow C + jS = (\cos \theta + j\sin \theta) + \frac{1}{2}(\cos 2\theta + j\sin 2\theta) + \dots$$

$$= e^{j\theta} + \frac{1}{2}e^{2j\theta} + \frac{1}{4}e^{3j\theta} + \dots = e^{j\theta} \left(1 + \frac{1}{2}e^{j\theta} + \frac{1}{4}e^{2j\theta} + \dots \right)$$

$$= e^{j\theta} \left(1 + \frac{1}{2} e^{j\theta} + \left(\frac{1}{2} e^{j\theta} \right)^2 + \dots \right) = e^{j\theta} \left(1 - \frac{1}{2} e^{j\theta} \right)^{-1}$$

$$=\!\frac{e^{\mathrm{j}\theta}}{\left(1\!-\!\frac{1}{2}e^{\mathrm{j}\theta}\right)}\!=\!\frac{e^{\mathrm{j}\theta}\!\left(1\!-\!\frac{1}{2}e^{-\mathrm{j}\theta}\right)}{\left(1\!-\!\frac{1}{2}e^{\mathrm{j}\theta}\right)\!\!\left(1\!-\!\frac{1}{2}e^{-\mathrm{j}\theta}\right)}\!=\!\frac{e^{\mathrm{j}\theta}\!-\!\frac{1}{2}}{1\!-\!\frac{1}{2}\!\left(e^{\mathrm{j}\theta}\!+\!e^{-\mathrm{j}\theta}\right)\!+\!\frac{1}{4}}$$

$$= \frac{\cos \theta - \frac{1}{2} + j\sin \theta}{\frac{5}{4} - \cos \theta} \Rightarrow S = \frac{4\sin \theta}{5 - 4\cos \theta}$$

E.g. Find all 3 cube roots of 8.

Write $z^3 = 8$ in polar form $\equiv (8,0)$

$$\Rightarrow \sqrt[3]{8} = \sqrt[3]{8} \left(\cos \frac{0 + 2k\pi}{3} + j \sin \frac{0 + 2k\pi}{3} \right)$$
$$= (2,0), \left(2, \frac{2\pi}{3} \right), \left(2, \frac{4\pi}{3} \right)$$
$$= 2, 2 \left(-\frac{1}{2} + j \frac{\sqrt{3}}{2} \right), 2 \left(-\frac{1}{2} - j \frac{\sqrt{3}}{2} \right)$$

Note that the sum is

$$2 + 2\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right)$$
$$2 - 1 + j\sqrt{3} - 1 - j\sqrt{3} = 0$$

Note also that the product

$$= 8\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) = 8\left(\frac{1}{4} + \frac{3}{4}\right) = 8$$

Summary FP2 Topic 4: **Power Series**

References: Chapter 4 Pages 69-76

Maclaurin's Expansion

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$

providing that f(x) and all its derivatives exist at x = 0

Example 4.1 Page 72

If the series with *n* terms tends to a limit as *n* tends to infinity, then we say that the series converges as n tends to infinity and it converges to f(x).

Exercise 4A Q. 1(i), 9

References:

Chapter 4

Page 76

Series expansions for standard functions

$$\Rightarrow$$
 e^x = 1 + x + $\frac{x^2}{2!}$ + $\frac{x^3}{3!}$ + $\frac{x^4}{4!}$ + + $\frac{x^r}{r!}$ +

Valid for all values of

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{\left(-1\right)^{r+1} x^r}{r} + \dots$$
Valid for all $x = 1$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots$$

Valid for all x

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots$$

Valid for all x

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{\left(-1\right)^r x^{2r+1}}{\left(2r+1\right)} + \dots$$

Valid for $|x| \le 1$

References: Chapter 4 Page 78

An alternative approach

Using the function notation, f(x) and the first derivative, f'(x) with the associated values f(0) and f '(0), etc, then sometimes it is possible to obtain a relationship between derivatives.

Example 4.3

Page 78

E.g.
$$f''(x) = af'(x) + bf(x)$$
.

Then
$$f''(0) = af'(0) + bf(0)$$

and f "
$$(x) = af'(x) + bf'(x)$$
, etc.

Exercise 4B Q. 1(i), 3

This relationship may be continued indefinitely.

FP2; Further Methods for Advanced Mathematics

Version B: page 6

Competence statements s1, 2, 3

© MEI

E.g. Find a series expansion for $y = \frac{1}{(1+x)^2}$

$$f(x) = (1+x)^{-2}$$
; $f(0) = 1$

$$f'(x) = -2(1+x)^{-3}$$
; $f'(0) = -2$

$$f''(x) = -2 \times -3(1+x)^{-4}$$
; $f''(0) = 6$

$$\Rightarrow f(x) = 1 - 2x + 2 \times 3 \times \frac{x^2}{2} - 2 \times 3 \times 4 \times \frac{x^3}{3!} + \dots$$

$$\Rightarrow$$
 f(x)=1-2x+3x²-4x³+....

E.g. Find a series expansion for $y = \cos x$

$$f(x) = \cos x; \quad f(0) = 1$$

$$f'(x) = -\sin x$$
; $f'(0) = 0$

$$f''(x) = -\cos x$$
; $f''(0) = -1$

$$f'''(x) = \sin x; \quad f'''(0) = 0$$

$$f''''(x) = \cos x$$
; $f''''(0) = 1$

$$\Rightarrow$$
 f(x) = 1 - $\frac{x^2}{2!}$ + $\frac{x^4}{4!}$ -

It can be seen that odd powers have coefficient 0 and even powers have coefficients alternating 1 and -1.

$$\Rightarrow$$
 $(r+1)$ th term is $\frac{(-1)^r x^{2r}}{(2r)!}$

E.g. Find a series expansion for $y = \arcsin x$ up to the term in x^2 , and hence find an

approximation to $\int_{0.2}^{0.2} \arcsin x \, dx$.

$$f(x) = \arcsin x; \quad f(0) = 0$$

$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
; $f'(0) = 1$

$$f''(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}}; f''(0) = 0$$

$$\Rightarrow f(x) = x + \dots$$

$$\Rightarrow \int_{0.1}^{0.2} \arcsin x \, dx \approx \int_{0.1}^{0.2} x \, dx = \left[\frac{x^2}{2} \right]_{0.1}^{0.2}$$

$$= 0.02 - 0.005 = 0.015$$

E.g. Find a series expansion for $f(x) = e^x \cos x$.

$$f(0) = 1$$

$$f'(x) = e^x \cos x - e^x \sin x$$
; $f'(0) = 1$

$$f''(x) = e^x \cos x - e^x \sin x - e^x \sin x - e^x \cos x = -2e^x \sin x$$

$$\Rightarrow$$
 f "(x) = 2f '(x) - 2f (x)

$$\Rightarrow$$
 f ''(0) = 2f '(0) - 2f (0) = 2 - 2 = 0

$$\Rightarrow$$
 f "'(x) = 2f "(x) - 2f '(x)

$$\Rightarrow$$
 f "'(0) = 2f "(0) - 2f '(0) = -2

$$\Rightarrow$$
 f ""(x) = 2f "'(x) - 2f "(x) \Rightarrow f ""(0) = -4

$$\Rightarrow$$
 f(x) = e^x cos x = 1 + x - $\frac{2x^3}{3!}$ - $\frac{4x^4}{4!}$ +

Summary FP2 Topic 5: Matrices −1

References: Chapter 5 Pages 84-86

Determinants

For the determinant $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ the **minor**

Example 5.1 Page 86

of the element a_1 , A_1 , is the 2×2 determinant obtained by eliminating the row and column containing a_1 .

Then $\Delta = a_1 A_1 + a_2 A_2 + a_3 A_3$

Rules for calculating determinants

column from another column).

interchange leaves the sign unaltered.

(ii) The value of a determinant is unchanged by

(iii) A determinant with a row or column of zeros

subtracting one row from another row (or one

is zero. From (ii) above, the value of a determi-

nant with identical rows (or columns) is zero.

where
$$A_1 = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$$
, $A_2 = -\begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix}$, $A_3 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$

Exercise 5A Q. 1(i), 2(i), 5

References:

Chapter 5

Pages 87-91

Exercise 5B

Q. 1, 12

E.g. Find the value of the determinant

E.g. Find the value of the determinant

 $\Delta = \begin{vmatrix} 2 & 7 & 8 \end{vmatrix}$ (Row 3 – Row 2)

 $= \begin{vmatrix} 1 & 2 & 5 \\ 0 & 3 & -2 \\ 0 & 1 & 2 \end{vmatrix} \begin{pmatrix} Row 3 - Row 1 \\ and Row 2 - 2 \times Row 1 \end{pmatrix}$

 $\Delta = \begin{vmatrix} 2 & 7 & 8 \end{vmatrix}$. 3 10 15

Rules for calculating determinants
(i) Interchanging two columns (or rows) changes the sign of the determinant. However, cyclic
$$\Delta = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 6 & 7 \\ 3 & 11 & 13 \end{bmatrix}$$

 $\Delta = \begin{vmatrix} 2 & 6 & 5 \end{vmatrix}$ (Column 3 – Column 1)

$$= 5 \begin{vmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ 3 & 11 & 2 \end{vmatrix}$$
 Factor of 5 from Column 3
$$= 5 \begin{vmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ -1 & -1 & 0 \end{vmatrix}$$
 (Row 3 - 2×Row2)

$$= 5 \begin{vmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ -1 & -1 & 0 \end{vmatrix}$$
 (Row 3 - 2×Row2)
= -5 $\begin{vmatrix} 1 & 2 \\ -1 & -1 \end{vmatrix}$ = -5 ((-1) - (-2)) = -5

E.g. Find M^{-1} where $M = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 7 & 8 \\ 3 & 10 & 15 \end{pmatrix}$.

From above, $\Delta = 8$.

References: Chapter 5 Pages 93-96

The inverse of a 3×3 matrix

Given $\mathbf{M} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}, \ \mathbf{M}^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{pmatrix}$

Example 5.3 Page 94

where Δ is the value of the determinant

From above, $\Delta = a_1 A_1 + a_2 A_2 + a_3 A_3$

Note that $a_1B_1 + a_2B_2 + a_3B_3 = 0$

i.e. multiplying out the "wrong" column with a row gives 0.

Exercise 5C Q. 1(i), 3, 5

References: Chapter 5 Pages 98-101

Simultaneous Equations

2 simultaneous equations in two unknowns or three equations in three unknowns may be written in matrix form, MX = A

Then the equations may be solved, since $X = M^{-1}A.$

Exercise 5D Q. 3, 10, 16

This represents the solution provided M⁻¹ exists. If M⁻¹ does not exist then the equations are either inconsistent or the solution is not unique.

FP2; Further Methods for Advanced Mathematics

Version B: page 7

Competence statements m1, m5

© MEI

 $B_1 = -\begin{vmatrix} 2 & 8 \\ 3 & 15 \end{vmatrix} = -6, B_2 = \begin{vmatrix} 1 & 5 \\ 3 & 15 \end{vmatrix} = 0, B_3 = -\begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = 2$ $C_1 = \begin{vmatrix} 2 & 7 \\ 3 & 10 \end{vmatrix} = -1, C_2 = -\begin{vmatrix} 1 & 2 \\ 3 & 10 \end{vmatrix} = -4, C_3 = \begin{vmatrix} 1 & 2 \\ 2 & 7 \end{vmatrix} = 3$ $\Rightarrow \mathbf{M}^{-1} = \frac{1}{8} \begin{pmatrix} 25 & 20 & -19 \\ -6 & 0 & 2 \\ -1 & -4 & 3 \end{pmatrix}$

 $A_1 = \begin{vmatrix} 7 & 8 \\ 10 & 15 \end{vmatrix} = 25, A_2 = -\begin{vmatrix} 2 & 5 \\ 10 & 15 \end{vmatrix} = 20, A_3 = \begin{vmatrix} 2 & 5 \\ 7 & 8 \end{vmatrix} = -19$

Determine whether the following three equations are consistent or inconsistent.

$$\pi_1: 3x+2y+z-4=0$$

$$\pi_2: x + y + 2z - 6 = 0$$

$$\pi_3: 3x + y - 4z - 8 = 0$$

Det(M) = 0 so no unique solution.

$$2\pi_1 - 3\pi_2 \equiv 3x + y - 4z + 10 = 0 \neq \pi_3$$
So inconsistent.

References: Chapter 5 Pages 104-110

Eigenvectors and Eigenvalues

If **s** is a non-zero vector such that $\mathbf{M}\mathbf{s} = \lambda \mathbf{s}$ for a scalar number, λ , then **s** is called an Eigenvector of M. λ is called an Eigenvalue of M.

Example 5.5 Page 107

If M is a 2×2 matrix then there are two Eigenvectors; if M is a 3×3 matrix then there are three.

Exercise 5E Q. 1(i),2(i), 6

To find the Eigenvalues and Eigenvectors, solve $Ms = \lambda s$

i.e. $(M - \lambda I)s = 0$.

As **s** is non-zero, this means that $Det(M - \lambda I) = 0$

References: Chapter 5 Pages 113-114

The diagonal form and powers of M

If **M** is a 2×2 matrix with Eigenvectors \mathbf{s}_1 and \mathbf{s}_2 with associated Eigenvalues λ_1 and λ_2 then the matrix $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2)$ and $\boldsymbol{\Lambda}$ which is a matrix where the elements of the leading diagonal are the associated Eigenvalues with zeros elsewhere are such that $\mathbf{MS} = \mathbf{S}\boldsymbol{\Lambda}$.

Exercise 5F Q. 1(i), 2

$$MS = SA \Rightarrow S^{-1}MS = A$$

$$\Rightarrow (S^{-1}MS)^{2} = A^{2}$$

$$\Rightarrow S^{-1}MS S^{-1}MS = S^{-1}MMS = S^{-1}M^{2}S = A^{2}$$

$$\Rightarrow M^{2} = SA^{2}S^{-1}$$
Similarly, $M^{n} = SA^{n}S^{-1}$

The similar property is true for a 3×3 matrix.

References: Chapter 5 Pages 114-116

The Cayley Hamilton Theorem

Every square matrix satisfies its own characteristic equation.

For the 2×2 matrix M, if the characteristic equation is $\lambda^2 + a\lambda + b = 0$ Then $M^2 + aM + bI = 0$

Exercise 5F Q. 3(ii), 7

It follows, for instance, by multiplying throughout by M, that $M^3 + aM^2 + bM = 0$.

This gives an alternative method to find powers of M.

FP2; Further Methods for Advanced Mathematics Version B: page 8

Competence statements m2, m3, m4, m6, m7 © MEI

E.g.
$$M = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$$
. $|M - \lambda I| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 2 \\ 8 & 1 - \lambda \end{vmatrix} = 0$
 $\Rightarrow (1 - \lambda)^2 - 16 = 0 \Rightarrow 1 - \lambda = \pm 4 \Rightarrow \lambda = -3,5$
Let $\mathbf{s} = \begin{pmatrix} x \\ y \end{pmatrix}$. For $\lambda = 5$, $\begin{pmatrix} 1 - 5 & 2 \\ 8 & 1 - 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\Rightarrow -4x + 2y = 0 \Rightarrow y = 2x \Rightarrow \text{Eigenvector} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
For $\lambda = -3$, $\begin{pmatrix} 1 + 3 & 2 \\ 8 & 1 + 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\Rightarrow 4x + 2y = 0 \Rightarrow y = -2x \Rightarrow \text{Eigenvector} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

E.g.For M above,
$$M = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$$
.
 $\mathbf{s}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\lambda_1 = 5$, $\mathbf{s}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\lambda_2 = -3$
 $\Rightarrow \mathbf{S} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$, $\Lambda = \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}$
Check: $\mathbf{MS} = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ 10 & 6 \end{pmatrix}$
 $\mathbf{S}\Lambda = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ 10 & 6 \end{pmatrix}$

E.g.For $M = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$, express M in the form SAS^{-1}

and hence find M³.
$$\begin{vmatrix} 3-\lambda & 2 \\ 4 & 1-\lambda \end{vmatrix} = 0 \Rightarrow (3-\lambda)(1-\lambda) - 8 = 0$$

$$\Rightarrow \lambda^2 - 4\lambda - 5 = 0 \Rightarrow (\lambda - 5)(\lambda + 1) = 0 \Rightarrow \lambda = 5, -1$$
For $\lambda = 5$,
$$\begin{pmatrix} 3-5 & 2 \\ 4 & 1-5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x = y \Rightarrow \mathbf{s}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
For $\lambda = -1$,
$$\begin{pmatrix} 3+1 & 2 \\ 4 & 1+1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow 2x + y = 0 \Rightarrow \mathbf{s}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\Rightarrow \mathbf{S} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbf{S}^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad \Lambda^3 = \begin{pmatrix} 5^3 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Rightarrow \mathbf{M}^3 = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 125 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 125 & -1 \\ 125 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 249 & 126 \\ 252 & 123 \end{pmatrix} = \begin{pmatrix} 83 & 42 \\ 84 & 41 \end{pmatrix}$$

E.g.For M above the characteristic equation is $\lambda^{2} - 4\lambda - 5 = 0 \Rightarrow M^{2} - 4M - 5I = 0$ $\Rightarrow M^{2} = 4M + 5I = 4 \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix} + 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 17 & 8 \\ 16 & 9 \end{pmatrix}$ and $M^{2} = 4M + 5I \Rightarrow M^{3} = 4M^{2} + 5M$ $= 4 \begin{pmatrix} 17 & 8 \\ 16 & 9 \end{pmatrix} + 5 \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 83 & 42 \\ 84 & 41 \end{pmatrix}$

Summary FP2 Option 1: Hyperbolic Functions

References: Chapter 6 Pages 123-128

Exercise 6A Q. 1, 3(i), 7(ii), 9(ii)

Hyperbolic Functions

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right), \quad \sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\frac{d(\cosh x)}{dx} = \sinh x, \quad \frac{d(\sinh x)}{dx} = \cosh x$$

$$\frac{d}{dx} \left(\tanh x \right) = \operatorname{sech}^2 x$$

References: Chapter 6 Page 125

Example 6.1 Page 126

Osborne's Rule

Hyperbolic identities are identical to the trigonometrical identities except that whenever there is a product (or implied product) of two sinhs the sign is reversed.

E.g.
$$\cos^2 x + \sin^2 x = 1$$

and $\cosh^2 x - \sinh^2 x = 1$

Exercise 6B Q. 2

Compound Angle formulae

 $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$ $\cosh(x-y) = \cosh x \cosh y - \sinh x \sinh y$ $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$ $\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh y$ $\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$ $\tanh(x-y) = \frac{\tanh x - \tanh y}{1 - \tanh x \tanh y}$

References: Chapter 6 Page 128

Example 6.2 Page 133

Exercise 6B Q. 2

References: Chapter 6 Pages 130-134

Exercise 6C Q. 4(i), 5(i), 6 (i),(ii), 7

Other hyperbolic functions

 $coth x = \frac{1}{\tanh x}, \quad \operatorname{sech} x = \frac{1}{\cosh x}, \quad \operatorname{cosech} x = \frac{1}{\sinh x}$

Inverse hyperbolic functions

$$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right),$$

$$\operatorname{arcosh} x = \ln \left(x + \sqrt{x^2 - 1} \right)$$

$$\operatorname{ar sinh} x = \ln \left(x + \sqrt{x^2 + 1} \right)$$

$$\frac{d}{dx} \left(\operatorname{arcosh} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} \left(\operatorname{arsinh} x \right) = \frac{1}{\sqrt{x^2 + 1}}$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \operatorname{arsinh} \frac{x}{a} + c$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \operatorname{arcosh} \frac{x}{a} + c$$

E.g. Show that $\sinh 2x = 2 \sinh x \cosh x$ and find an expression for $\cosh 2x$.

From definitions,

$$2 \sinh x \cosh x = 2 \left(\frac{e^x - e^{-x}}{2} \right) \left(\frac{e^x + e^{-x}}{2} \right)$$
$$= \frac{1}{2} \left(e^{2x} - e^{-2x} \right) = \sinh 2x$$
$$\cosh 2x = \frac{1}{2} \left(e^{2x} + e^{-2x} \right) = \frac{1}{2} \left(\left(e^x + e^{-x} \right)^2 - 2 \right)$$
$$= \frac{1}{2} \left(e^x + e^{-x} \right)^2 - 1 = 2 \cosh^2 x - 1$$

E.g.
$$\cos 2x = 1 - 2\sin^2 x$$

and $\cosh 2x = 1 + 2\sinh^2 x$
but $\cos 2x = 2\cos^2 x - 1$
and $\cosh 2x = 2\cosh^2 x - 1$

E.g. Prove the compound angle formula for tanh(x + y) and find an expression for tanh2x.

$$\tanh(x+y) = \frac{\sinh(x+y)}{\cosh(x+y)}$$

$$= \frac{\sinh x \cosh y + \cosh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y}$$

$$= \frac{\frac{\sinh x \cosh y}{\cosh x \cosh y} + \frac{\cosh x \sinh y}{\cosh x \cosh y}}{\frac{\cosh x \cosh y}{\cosh x \cosh y}}$$

$$= \frac{\frac{\sinh x}{\cosh x \cosh y} + \frac{\sinh x \sinh y}{\cosh x \cosh y}}{\frac{\cosh x}{\cosh x} + \frac{\sinh y}{\cosh x \cosh y}}$$

$$= \frac{\frac{\sinh x}{\cosh x} + \frac{\sinh y}{\cosh x \cosh y}}{1 + \frac{\sinh x \sinh y}{\cosh x \cosh y}} = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

$$\Rightarrow \tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

E.g. Find
$$\int_{1}^{2} \frac{1}{\sqrt{x^{2} + 2x + 10}} dx$$
$$x^{2} + 2x + 10 = (x + 1)^{2} + 9$$
$$\Rightarrow \int_{1}^{2} \frac{1}{\sqrt{x^{2} + 2x + 10}} dx = \int_{1}^{2} \frac{1}{\sqrt{(x + 1)^{2} + 9}} dx$$
$$= \left[\operatorname{arsinh} \left(\frac{x + 1}{3} \right) \right]_{1}^{2} = \operatorname{arsinh} 1 - \operatorname{arsinh} \frac{2}{3}$$
$$= \ln \left(1 + \sqrt{2} \right) - \ln \left(\frac{2}{3} + \sqrt{\frac{13}{9}} \right) = \ln \left(\frac{3\left(1 + \sqrt{2} \right)}{2 + \sqrt{13}} \right)$$

FP2; Further Methods for Advanced Mathematics
Version B: page 9

Competence statements a4, 5, 6, 7, 8

Summary FP2 Option 2: Investigation of Curves -1

References: Chapter 7 Pages 138-142

The locus of a point is the path traced out by the point as it moves according to a given rule. There are three ways to describe the locus:

Cartesian equation

A relationship between the x and y coordinates of the point. f(x,y) = 0

Parametric equation

The coordinates, x and y are related via a parameter. x = f(t), y = g(t).

Polar equation

Each point in the plane is described in terms of the distance from an origin (called the Pole) and the angle turned through anticlockwise from a fixed line through the pole. $r = f(\theta)$.

References: Chapter 7 Pages 142-145

Conversion between forms

Polar - Cartesian and Cartesian - Polar

Use
$$r^2 = x^2 + y^2$$
; $x = r\cos\theta$, $y = r\sin\theta$

or
$$\cos \theta = \frac{x}{r}$$
, $\sin \theta = \frac{y}{r}$

Exercise 7A Q. 1(i), 2, 8

Parametric - Cartesian

Eliminate the parameter from the equations giving the relationship between x and y. Parametric—Polar

First convert to Cartesian.

References: Chapter 7 Pages 148-155

Loops and cusps

A loop is a part of the curve that traces out one area by passing through a given point twice. A cusp is a point on a curve where two arcs of the curve meet with coincident tangents.

Example 7.2 Page 156

References: Chapter 7

Pages 155-157

Symmetry and nodes

A point where a curve crosses itself is called a Node.

If two values of the parameter of a parametric equation give the same point, then that point is a node.

References: Chapter 7 Pages 158-159

Asymptotes

Horizontal and vertical asymptotes were introduced in FP1. Some curves also have oblique asymptotes.

Example 7.3 Page 158

If the equation of a curve can be rewritten in the form y = ax + b + f(x) where f(x) tends to zero as x tends to infinity then the line y = ax + b is an oblique asymptote.

Exercise 7A Q. 3(i), (ii)

FP2; Further Methods for Advanced Mathematics

Version B: page 10 Competence statements C1, 2, 3, 4, 5

© MEI

The curve with equation

$$4x^2 + y^2 = 9 \text{ is an}$$
 ellipse.

The parametric equations are:

$$x = \frac{3}{2}\cos T, y = 3\sin T$$

E.g. Convert the polar equation $r = \frac{3}{\sqrt{3\cos^2{\theta} + 1}}$

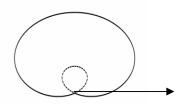
to cartesian form.

$$r = \sqrt{x^2 + y^2}$$
 and $\cos \theta = \frac{x}{r} \Rightarrow x^2 + y^2 = \frac{9}{\frac{3x^2}{x^2 + y^2} + 1}$

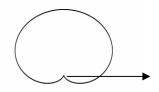
$$\Rightarrow x^2 + y^2 = \frac{9(x^2 + y^2)}{3x^2 + x^2 + y^2} \Rightarrow 1 = \frac{9}{4x^2 + y^2}$$

$$\Rightarrow 4x^2 + y^2 = 9$$

E.g. $r = 1 + 2\sin\theta$ contains a loop.



 $r = 1 + \sin\theta$ has a cusp.



E.g. Find the equations of the asymptotes of the curve $y = 1 + \frac{x^2 + 3x - 4}{x - 2}$ and draw the graph.

The curve can be rewritten

The curve can be rewritten
$$y = 1 + x + 5 + \frac{6}{x - 2} = x + 6 + \frac{6}{x - 2}$$

$$\Rightarrow \text{ vertical asymptote is}$$

$$x = 2$$

and oblique asymptote is

$$y = x + 6$$

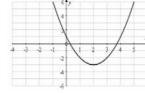
Summary FP2 Option 2: Investigation of Curves -2

References: Chapter 7 Pages 160-162

Families of curves

Curves with a common property are called a family of

E.g. $v = x^2 - 4x + 1$ is a curve known as a parabola.



For different values of a, $y = x^2 - 4x + a$ is a family of curves.

Exercise 7B Q. 2

References: Chapter 7 Pages 172-177

Using Calculus

Calculus can be used when the curve is given in any of the three forms:

- To find equations of tangents and normals
- To determine maximum and minimum points
- To find maximum and minimum distances from the

Exercise 7C Q. 6

References:

Chapter 7 Pages 184-195 origin.

Conics

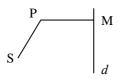
If S is a fixed point and d a fixed line, then the locus of a point P which moves so that the ratio of the distance to the point and to the line is constant is a conic.

The value of the ratio, e, is called the

eccentricity.

$$|PS| = e|PM|$$

e = 1 gives a parabola 0 < e < 1 gives an ellipse e > 1 gives a hyperbola



Example 7.5 Page 191

Exercise 7D

Q. 3, 6, 7

In their simplest forms the cartesian equations of the conics are:

Parabola: $v^2 = 4ax$

Ellipse:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

When a = b the ellipse becomes a circle: $x^2 + y^2 = a^2$

Hyperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

When a = b the hyperbola is rectangular: $x^2 - y^2 = a^2$

this can be rewritten $XY = c^2$

In their simplest forms the parametric equations of the conics are:

Parabola: $x = at^2$, y = 2at

Ellipse: $x = a\cos t$, $y = b\sin t$

When a=b the ellipse becomes a circle: $x=a\cos t, y=a\sin t$

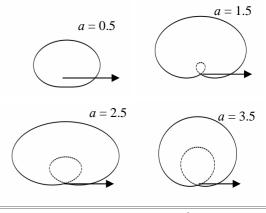
When a = b the hyperbola is rectangular and can be transformed to

$$x = ct, y = \frac{c}{t}$$

E.g. Investigate the family of curves with polar equation $r = 1 + a\sin\theta$ for different values of a.

Two curves are shown on the previous page with a = 1 and a = 2. a = 0 gives a circle.

The curves shown are for a = 0.5, 1.5, 2.5 and



E.g. The tangent at the point P $(ap^2, 2ap)$ on the parabola $x = at^2$, y = 2at meets the x-axis at T and the normal at P meets the x-axis at N. Find the area of the triangle PNT.

At any point, $\frac{dx}{dt} = 2at$, $\frac{dy}{dt} = 2a \Rightarrow \frac{dy}{dx} = \frac{1}{t}$

At P the gradient of the tangent is $\frac{1}{2}$

 \Rightarrow Tangent has equation $y - 2ap = \frac{1}{n}(x - ap^2)$

N

 $\Rightarrow py = x + ap^2$

 \Rightarrow When $y = 0, x = -ap^2$

 $\Rightarrow T(-ap^2,0)$

Normal at P has equation

 $v-2ap = -p(x-ap^2)$

 \Rightarrow $y + px = 2ap + ap^3$

 \Rightarrow When $y = 0, x = 2a + ap^2$ $\Rightarrow N(2a+ap^2,0)$

In triangle TPN, length of base = TN

 $= 2a + 2ap^2$

Height = y coordinate of P = 2ap

 \Rightarrow Area = $\frac{1}{2}(2a + 2ap^2)2ap = 2a^2p(1+p^2)$

Hyperbola: $x = a \sec t$, $y = b \tan t$ Exercise 7E Q. 6

FP2; Further Methods for Advanced Mathematics

Version B: page 11

Competence statements C6, 7, 8

© MEI