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Summary FP2 Topic 1: Calculus

W=

E.g. Find i(arcsin 2x).

u=2x > —=2
dx

d . d . du
- 2X) = — —
=+ (arcsin 2x) i (arcsinu) i

1 2
- 2=
Ji-4x?

Ji-u?

2
. 1
Eg. Find | ——dx
! 1+4x%°

d(arctanx) 1
dx T 14x
Substitute 2x =tan &

Note first that

5 :I dx=arctan x+c
1+x°

:Z% =sec? @ and 1+4x* =1+tan’ @ =sec’ 0
Whenx=0,tan0=0=60=0

V\/henx:l,tané?:l:w:7—Z
2 4

7N %%sece V7
- £1+4x2dX=£ 220 Idg

_Lrgphm
_2[9]0 8

. X(x-2)
X(x=2) 1 2
(X+)(x*+2) x+1 x*+2

(This is found by partial fractions, covered in C4.)

References: Inverse Trigonometrical Functions
Chapter 1 y = arcsinx is the inverse function of y = sinx.
Pages 1-11 d(arcsinx) 1
dx N
d(arccosx) 1
Exercise 1B dx V1-x
Q. 2, 4, 6(ii), d(arctanx) 1
7(ii) dx 14+ %2
References: Integration involving Inverse Functions
Chapter 1 .
Pages 11-14 || d(arcsinx) 1
dx N
Example 1.6 :>_[ ! =dx = arcsin x+c
Page 12 V1-x
d(arctanx) 1
dx 1+
:>J' 1 > dx =arctan x+¢
1+x
This can be seen by making the substitution
Exercise 1C dx 2
o X=tanfd = —=sec" 4
Q. 1(i), (i), do
2(i), (i) and 1+ x? =1+tan® @ =sec?
1 sec’ 6
= dx = do
J.1+ x2 jsec2 0
:jde: f+c=arctanx+c
When making a substitution to complete a definite
integral, either convert the limits to the values of
the function being used or turn your integrand
back into a function of xand then substitute the limits.
References: -
Chapter 1 Harder integrals
Pages 15-17 If the function in the denominator is of the form
ax? + bx + ¢ then completing the square allows the
procedure above to be used.
Example 1.9 E.g. x2+4x+7z(x+2)2+3
Page 15 1
Sol :_[ 5 dx ='[ ;X
X*+4X+7 (x+2) +3
Substitute (x+2) = J3tano
Exercise 1D || = (x+2)"+3=3tan’ 9+3=3sec’ 0

Q. 1(i), 4(1),(v),

6(i)

and dx = /3sec’ 6d6
:>I=I( 1 dx_'[\/_SeC 0do 1f9+c

X+ 2)2 +3 3sec? @
= iarctan [izj +C
V3 3

-2 1 2
:J X(x-2) :I(M_x2+2jdx

(x+1)(x2+1)
dx In|x+1— 2—arctan—+c

—dxz 7 7

X+1
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Competence statements c1, 2, 3
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E.g. FindJZ'

1
1+2x-x%= 2—(x—1)2

So let (x—l):x/fu

Then 1+2x—x? =2 -(x-1)" = 2-2u?
and dx = ~/2du

Whenx=1Lu=0and x=2,u =




Summary FP2 Topic 2: Polar Coordinates

MEL

References:
Chapter 2
Page 20

Exercise 2A

Q.2

References:
Chapter 2
Page 21

Cartesian coordinates identify a point by an
ordered pair (X, y) of distances from two, usually
perpendicular, axes which intersect at the origin,
0.

Polar coordinates identify a point by an ordered
pair, (r, 6) where r is the distance from a fixed
point, O, called the pole, and @is the angle
turned through in an anticlockwise direction
from a fixed line through O, called the initial
line.

The point is uniquely defined providing r and 6
are defined such thatr >0 and 0 < 8<2m.
(Angles are usually expressed in radians.)

4 (xy)

%{ [

X

References:
Chapter 2
Pages 23-26

Conversion between Polars and Cartesians
X=rcosf, y=rsinf
X +y=r’=r=4x*+y’

y

tan @ = —
X

Example 2.1
Page 23

Exercise 2B

Q.1,2

Polar Equations of Curves
The polar equation of a curve can be expressed
in the form r = f(6).

Curves may be sketched by plotting specific
points or by considering the value of r over a
range of values of 6.

References:
Chapter 2
Pages 27-28

Exercise 2C

Q.2

Area of Sector

1%
Area = —I r’dée
29:11
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E.g. The point with Cartesian coordinates (3, 4) has
polar coordinates (r,6) where

6 =tan™ 4_ 0.927 radians
3 (3.4)

andr=+/3*+4* =5

0

The point with cartesian coordinates (1, 1) has

polar coordinates (\/E, %).

(1,1

n/4

E.g. Sketch the curve r =1 + 2siné.

—

As 0 / As Oincreases from 0 to
increases . "/», sin@increases to 1
from ™/, to |:r and so r increases to 3
T, sin@ I
decreases \ When =0, r=1.
to 0 and so .

As Qincreases from 1t to’
I decreases .
to 1 /, , sin@decreases to —1 and

so r decreases to —1.
(Note that there is a point
here when r = 0.

This is when
sinf=~"/,i.e. 9=""5.)

As @increases from
3%/, to 2m, sin@
increases from —1 to
0 and so r increases
to 1, once again
through 0, when
0="".

E.g. Find the area of the sector of the curve
r=1+2sinf from =0to "/,

1%/
Area = —J. r’de
20:0{

% N

17 . 2 \
=— | (1+2sin@) dé |
3 [(1r2ind) Y,
%
:EI(1+4sin9+4sin26’)d0

0

%
:EJ(1+4sin6’+2(1—00526’))d9

0
= l[30 —4cos6 —sin 29]%
2 0

:1[3—“—4x0—0j—l(0—4—0)
2\ 2 2

:3_1r+2
4




Summary FP2 Topic 3: Complex Numbers —1

W=

References:
Chapter 3
Pages 32-35

The Polar form of a complex number X + yj is
given as (I, 6) where r is the modulus of the
complex number and &is the anticlockwise angle
turned through from the positive X (or real) axis.

Exercise 3B
Q.2,8,10

References:
Chapter 3
Pages 37-38

Exercise 3C
Q.4,6,14

tan @ = Y

Exercise 3A X

Q.3,15,18 X r=yx’+y’
To enable this representation to be unique, we define
the range of fto be —7< @< x, where the
measurement is usually in radians.

References: Sets of points

Chapter 3 The equation arg(z—p) = kz is a half line with
Page 36 constant angle k7 from the point p. The other half

represents the equation arg(z—p) = (k—1) 7.

Multiplication and division in polar form.
Ifz, =(r,,6) =1, (cos6, + jsin 4, )
and z, = (r,,6,) =t, (cosb, + jsin b, )
thenz,z, =(rr,,6,+6,)
=, (cos(6, +6,)+ jsin(6, +6,))

z,
and —+
ZZ

(r 0,-0 j—r—l(cos(H] —6,)+jsin(6,—6,))

It can also be seen that if z, =(I;,6,) and z, =(1,,6,)
then |z,,|= |z,||z,|

and arg(z,z,) =arg(z, ) +arg(z,)

E.g. The point (3 + 4j) with Cartesian coordinates
(3, 4) has Polar coordinates (r,8) where

6 =tan™' % =0.927 radians

r=+3+4>=5

G4

/0

The point 1 +j has polar coordinates [ﬁ,%)

/)

(1,1

Note the comparison
between the polar form
of complex numbers
and polar coordinates
(Topic 2.)

corog)oled
anfeB) 53

References:
Chapter 3
Pages 40-41

Exercise 3D

Q. 1(1), 2(1), 3(1)

de Moivre’s Theorem
Ifz=(r,0) =r(cosd+ jsin )
and n is any integer

2" =(r",ng) =r" (cosnd + jsinnb)

Eg Ifz —(COS—+]S1 %j

then z° = (COS—+_]SII]—
4 4

=(cos2m+ jsin2m)=1
( )

Note that the equivalent algebraic form of z is
1 1Y

1=—(1+j)= *=| — | (1+j)°
iz [ﬁj( )

1 . . . .

=£(1+8J—28—56J+70+56J—28—8J+1)

=L(1—28+70—28+1)=E:1
16 16

References:
Chapter 3
Pages 42-43

Example 3.2
Page 41

Exercise 3E

Q. 3,5(i)

Multiple angles using de Moivre’s Theorem
If 2= (cosf+ jsin )
and n is any integer
2" =(cos@+ jsin@)" =(cosnd+ jsinnd)

The powered bracket should be expanded using

=-1) and

then equate real and imaginary parts.

the binomial theorem (and using j’

Version B: page 4

© MEI

FP2; Further Methods for Advanced Mathematics

Competence statements j1, 2, 3, 4

E.g Ifz=(cosf+jsin6)
7 =(cos€+jsinl9)3 =(cos36+ jsin36)
=cos’ O+3jcos’ @sin@—3cosPsin’ @— jsin’ O
So cos38 =cos’ O—3cosfsin’ @
=cos’ 49—300349(1—0032 49)
=4cos’ #—3cosd
and sin36 =3cos’ @sinH—sin’
=3(1-sin’ 6)sin 6—sin’ 0
=3sinf—4sin’ &




Summary FP2 Topic 3: Complex Numbers -2

W=

References: Complex Exponents
Chapter 3 ¢!’ =cos@+jsin@
Pages 45-47 This comes from the comparison of the infinite
series expansions for cosd,sin @ and e'’

Example 3.6 i.e. cos@+ jsind

E.g. Express 1—¢’in the form asing o
¢!’ =cos@+jsinf=1-¢"’ =1—cosf—jsind

costl—Zsirf%:l—costZsinzg

1-¢’ =Zsinz§—2jsin§cos€=25ing sing —jcosg
2 2 2 20 2 2

.. 0.6 . 0 ..0..8 , 0
=-2j sin—| sin——jcos— |=-2jsin—| jsin——j cos—
2 2 2 2 2 2

0 Lo

=-2j sing cosg —jsing =-2jsin—e’
2 2 2 2

Page 47 ( ¢ o j ( ¢ & J
= 1——+—_... +_] 0__"’___"'
21 41 31 5!
Exercise 3F —1+ -9__2_ -_+9_4+ '_5+
Q. 1(ii), 4, 6 R TR TRV TIE Y
(o), 09 GO (60)
2! 3! 41
_ejt‘)

In particular: e =cosm+ jsinm=-1

References: Summations using complex numbers
Chapter 3 Series expansions involving cosd or sinf may
Page 49 be done using complex numbers, de Moivre’s
theorem and equating real and imaginary
parts.
Exercise 3G Complex roots
Q. 1,4 .
Ifz=r(cos@+jsin6),

Q/— _ Q/F(COS 0+ 2kn +jSiIl 9+2kn]
References: n n
Chapter 3 (For the range of the root to be [0, 271'],
Pages 51-56
the range of the number must be [0, 2nﬂ']).

Fork =0,1,2.....(n—1), these angles are
Example 3.8 distinct, giving the n nth roots of z.

Page 53 Since they all have the same modulus, they
all lie on the circle |Z| =4r and so they

Exercise 3H form, on an Argand diagram, a regular n-gon.

E.g. Find the sum of the series sin 9+%sin 29+isin 36+
. 1. 1.
LetS:smt9+Esm29+Zsm39+ .....
1 1
andC:cost9+§cos29+Zcos39+ .....

=C+jS :(cost9+jsin0)+%(c0520+jsin26)+ .....

=4y —e¥4 .. e/l 14— +—e¥+ ...
2 4 4
2 -1
=el? 1+lej9+(lej9) Fo :ew(l—lewj
2 2 2
_ 1 1
. e 1-=¢e? L —
¥ ( 2 j !

= 1) 1. 1 ) . 1, B 1
1-—¢? l—ejgj[l—e‘JgJ 1-—(e +e7)+=
[ 2 ) ( 2 2 2( ) 4

..
_cos@—EﬂsmG  4sing

 5-4cosf

é—cos@

The sum of roots of this equation is the
coefficient of the "™ term which is zero.

Method 2.
If the n roots are «, f, y...then these roots
form the vertices of a regular n-gon. Adding
complex numbers on the Argand diagram is
done by drawing them tracking round a

. polygon.
Exeéc 12e 3 In this case the numbers being added track
' round to the starting point. The “resultant” is
therefore zero.

Exercise 31

Q.9

FP2; Further Methods for Advanced Mathematics
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Competence statements j5, 6, 7, 8, 9, 10, 11
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Q.2.6 The sum of all nth roots of a complex E.g. Find all 3 cube roots of 8.
number is 0. .3 . _
Method 1. Write z° = 8 in polar form =(8,0)
Exercise 31 Consider the complex number z;. The nth N 0+2kz .. 0+2kxz
Q.2,4 roots are roots of the equation 2" = z,. = /8 = 8 cos 3 s 3

“Con (2524
SFENE RN

2

Note that the sum is

2-1+ B -1-j33=0

Note also that the product

1B 1 B 13
‘8[‘5*]7}[‘5”7}8[2*2}8




Summary FP2 Topic 4: Power Series 'E]
References: Maclaurin’s Expansion . . . _
Chapter 4 - g E.g. Find a series expansion fory = W
Pages 69-76 f(x)=1(0)+ xf'(0) + Ef "(0) + af "(0) +..... f(x) =(1+x) % f(0) =1
providing that f(x) and all its derivatives exist at F0)=-2(L+x)7; f'(0)=-2
Example 4.1 x=0 f'(x) =—2x-3(1+x)™*; f"(0)=6
' 2 3
Page 72 If the series with n terms tends to a limit as n tends 3f(X)=1—2X+2X3X%—2X3X4X%+ -----
to infinity, then we say that the series converges as s ’
n tends to infinity and it converges to f(x). = F(¥) =1=2x4+3x" - 4x" ...
Exercise 4A . . -
Q. 1(i), 9 E.g. Find a series expansion for y = cos x
’ f(x) =cosx; f(0)=1
f'(x) =—sinx; f'(0)=0
References: Series expansions for standard functions f"(x) =—cosx; f"(0)=-1
Chapter 4 2 43 4 r e g
Pagpe76 :>eX:1+x+X—I+X—I+X—'+ ..... +X—|+ ..... f"(x) =sinx; £"(0)=0
_ 2t 34l rt f"(x) =cosx; f™(0)=1
Valid for all values of x. . 4
X5 X
= f(X) :1—54‘?— .....
x* x* xt (1) x" Lo -
In(Ll+x) = x 7?+ 3 + ; - It can be seen that odd powers have coefficient 0
valid for —1< x<1. and even powers have coefficients alternating
land -1.
r - _l ryer
sinX:X_X_3+X_5_ ,,,,, +M ,,,,, = (r+1)thtermis (-1)
3t sl (2r+1) (2r)
Valid for all x.
e (_1), & E.g. Find a series expansion for y = arcsin x
COSX =1 e +W ----- up to the term in x?,and hence find an
. 0.2
Valid for all x. approximation to I arcsin x dx.
¥ x5 (_1)’ X2r+1 - 0.1
aI‘CtanX:X—?+€— ..... +(2|’—+l)+ ..... f(X) =arcsin x; f(O):O
. . 1 .,
Valid for |x|<1 f'(x) = N f'(0)=1
References: ) = — X - £70)=0
Chapter 4 An alternative approach ) (1— Xz)% 1O
Page 78 Using the function notation, f(x) and the first
derivative, f '(x) with the associated values f(0) and || = () =x+....
f'(0), etc, then sometimes it is possible to obtain a 02 02 x2 1%
Example 4.3 relationship between derivatives. = I arcsin xdx ~ I xdx = Py
0.1 0.1 0.1
Page 78 E.g. f'(x) = af () +bf (x). = 0.02-0.005 = 0.015
Then f "(0) = af '(0) + bf (0)
and f "(x) = af "(x) + bf '(x), etc.
This relationship may be continued indefinitely. E.g. Find a series expansion for f(x) =e” cosx.
f(0)=1
Exercise 4B f'(x)=e*cosx—e*sinx; f'(0)=1
Q. 1(i), 3 f"(x) = e* cos X —e* sin x —e* sin X —e” cos x = —2e* sin x

Version B: page 6
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Competence statements s1, 2, 3

— £7(x) = 2 '(x) - 2 ()

— £7(0) = 2 (0)—2f (0) =2—2=0

— £(x) = 2F "(X) — 2 '(X)

— £"(0) = 2f "(0) — 2f (0) = 2

— £™(x) = 2f "(x) - 2F "(x) = f "(0) = 4
2% 4x?

=f(x)=e*cosx=1+Xx———-——
3t 4l




Summary FP2 Topic 5: Matrices —1

W=

E.g. Find the value of the determinant

1 2 5
A=12 7 8|
3 10 15
125
A= {2 7 8 (Row3 — Row?2)
137
12 5
Row3 — Row 1
=10 3 -2
and Row 2 — 2xRow 1
01 2
3 -2
= =6—-(-2)=8
\1 2\ 2

E.g. Find the value of the determinant

References: Determinants

Chapter 5 a b ¢
1

Pages 84-86 For the determinant A= |a, b, c,| the minor

a3 b3 C3

Example 5.1 of the element a,, A, is the 2x 2 determinant
Page 86 obtained by eliminating the row and column

containing a,.
Then A=a A +a,A +a,A

b, ¢ C C
where A = b2 c2 ’ AZ:_El c1 ’ Agzsl cl

Exercise 5A P 0 27

Q. 1(i),2(i), 5

Rules for calculating determinants
(i) Interchanging two columns (or rows) changes

References: the sign of the determinant. However, cyclic

Chapter 5 interchange leaves the sign unaltered.

Pages 87-91 (if) The value of a determinant is unchanged by
subtracting one row from another row (or one
column from another column).

Exercise 5B (iii) A determinant with a row or column of zeros
X 1'512 is zero. From (ii) above, the value of a determi-
Q.1 nant with identical rows (or columns) is zero.

References: The inverse of a 3 x 3 matrix

Chapter 5

Pages 93-96 || & bhog A

GivenM=1|a, b, ¢, |,M*==|B, B, B,
A
b, ¢ C, C, C
Example 5.3 ) %G % G N T
Page 94 where A is the value of the determinant.
From above, A=a A +a,A, +a,A
. Note that a,B, +a,B, +a,B, =0
Exerc_lse aC i.e. multiplying out the "wrong" column with a row
Q.1(i). 3,5 .
gives 0.

References: Simultaneous Equations

Chapter 5 2 simultaneous equations in two unknowns or three

Pages 98-101

Exercise 5D
Q.3,10,16

equations in three unknowns may be written in
matrix form, MX = A

Then the equations may be solved, since
X=M"A.

This represents the solution provided M™ exists. If
M does not exist then the equations are either
inconsistent or the solution is not unique.

1 2 1
A=12 6 T|.
3 11 13
1 2 0
A= 6 5| (Column3 - Column 1)
3 11 10
1 2
I E ( Factor of 5 ]
from Column 3
3 11 2
1 2 0
=5/2 6 1| (Row3 — 2xRow2)
-1 -1 0
1 2
-—5_1 _1:—5((—1)—(—2)):—5
1 2 5
E.g. FindM* whereM={2 7 8|
3 10 15
From above, A= 8.

A1—7 8 _25,A2_—2 5_20,A3—2 5——19
10 15 10 15 7 8
Bl:_2 8:—6 B [ 5:0 B _h 5:2
315 2 315 ' |2 8
C, = =-1,C,=- =-4,C,= =3
3 10 3 10 2 7

25 20 -19
:M*:E—G 0 2
-1 4 3

FP2; Further Methods for Advanced Mathematics
Version B: page 7

Competence statements m1, m5
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Determine whether the following three equations are
consistent or inconsistent.

7 3X+2y+ 72-4=0

7m,. X+ y+2z-6=0

73X+ y—4z-8=0

Det(M) = 0 so no unique solution.

27, —3m, =3x+Yy—-4z+10=0 # 7,So inconsistent.




Summary FP2 Topic 5: Matrices —2

W=

References:
Chapter 5
Pages 104-110

Eigenvectors and Eigenvalues

If s is a non-zero vector such that Ms = As for a
scalar number, A, then s is called an
Eigenvector of M. A is called an Eigenvalue

of M.

12 1-1 2
E.g.M= . M=-2l=0= =
8 1 8 1-2

=>(1-2)-16=0 =1-A=+4=1=-35

e R

1
= -4x+2y =0= y = 2x= Eigenvector = [J

1+3 2 X 0
For A =-3, =
s e

1
=4x+2y=0=2y=-2x=> Eigenvector:[ 2)

Example 5.5
Page 107 If M is a2 x 2 matrix then there are two
Eigenvectors; if M is a 3 x 3 matrix then there
are three.
To find the Eigenvalues and Eigenvectors,
Exercise 5E solve Ms = 1s
Q. 1(i),2(i), 6 | i.e.(M—A)s=0.
As s is non-zero, this means that
DetM - Al)=0
References: The diagonal form and powers of M
Chapter 5

Pages 113-114

If M is a 2 x 2 matrix with Eigenvectors s; and
s, with associated Eigenvalues 1; and A, then
the matrix S = ('s;, s> ) and A which is a matrix
where the elements of the leading diagonal are
the associated Eigenvalues with zeros
elsewhere are such that MS = SA.

12
E.g.For M above, M = .
8 1

f) ) o
efl s )
16
o UGS

1
Check: MS = (8

Exercise 5F _ 1 _
Q. 1(i). 2 MS=SA=S"MS =4
1 2 2
=(s*MS ) =4
= S'MS S'MS =S*MMS =S'M?’S =A?
= M? =SA4°S*
Similarly, M" =SA"S™
The similar property is true for a 3 x 3 matrix.
References: The Cayley Hamilton Theorem
Chapter 5

Pages 114-116

Exercise 5F

Q. 3(ii), 7

Every square matrix satisfies its own
characteristic equation.

For the 2 x 2 matrix M, if the characteristic
equationis A*+al+b=0

Then M? + aM + bl =

It follows, for instance, by multiplying through-
out by M, that M® + aM? + bM = 0.

This gives an alternative method to find powers
of M.

3 2
E.g.ForM = (4 J,express M in the form SAS™

and hence find M°.

3-4
i 1m0 (B-A)1-4)-8

= 12-42-5=0=(1-5)(A1+1)=0=1=5, -1

s Lol
e e
:s:ﬁ —12j [o —Olj’sl 1(1 —1) A3:[503 —OJ
N A

C1(125 -1\(2 1) 1(249 126) (83 42
“3l12s 2 \1 -1) 3(252 123) (84 41

=M=

© MEI
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Competence statements m2, m3, m4, m6, m7

E.g.For M above the characteristic equation is
A?—44-5=0=>M?*-4M-51=0

o 2 o

and M? = 4M +51 = M®=4M’ +5M

17 8 3 2 83 42
=4 +5 =
[16 9} (4 lJ [84 41}

3
= M? = 4M + 5l =4(4




Summary FP2 Option 1: Hyperbolic Functions m

References: Hyperbolic Functions E.g. Show that sinh2x = 2sinh x cosh x and
Chapter 6 . .
Pages 123-128 | coshx =1(ex +e™), sinhx =1(e* ) find an expression for cosh2x.
2 2 From definitions,
tanhx = SMNX _€e" —e” e*-1 e —e e +e*
Exercise 6A T coshx  ef+e*  e¥41 2sinh xcoshx:z[ 5 ][ 5 J
Q. 1,3(i), d(coshx) . d(sinh x)
7(ii), 9(ii) ———~=sinhx, ——————==coshx 1,, S )
dx dx =—(e*—e x)=smh2x
d , 2
— (tanh x) =sech?x 1 1 ,
X cosh 2x=—(e2x+e’“)=—((ex+e’x) —2)
2 2
References: || Osborne’s Rule o 1ix, aox)? 2
Chapter 6 Hyperbolic identities are identical to the = E(e +e™) —1=2cosh” x—1
Page 125 trigonometrical identities except that whenever
there is a product (or implied product) of two E.g. cos2x =1—-2sin® x
sinhs the sign is reversed. and cosh 2x =1+ 2sinh? x
Example 6.1 E.g. cos’x+sin*x=1 but cos2x = 2cos® x—1
Page 126 2y _cinh2y —
J and cosh” x —sinh” x =1 and cosh 2x = 2cosh? x -1
Exercisze 6B | compound Angle formulae E.g. Prove the compound angle formula for tanh(x+ y)
Q and find an expression for tanh2x.
cosh(x+y)=cosh xcosh y+sinh xsinh y sinh (x-+y)
cosh(x—y) = cosh xcosh y —sinh xsinh y tanh(x+y)=— (x+y)
sinh(x+ y) =sinh xcosh y +cosh xsinh y _ sinh xcosh y+cosh xsinh y
sinh(x—y) =sinh xcosh y—cosh xsinh y cosh xcosh y +sinh xsinh y
A _ tanhx+tanhy sinh xcosh y N cosh xsinh y
tanh (x+y) = 1+ tanh xtanh y _ coshxcoshy ~ coshxcoshy
tanh x — tanh cosh xcosh y . sinh xsinh 'y
References: tanh(x—y)= tamhx—amny coshxcoshy ~ coshxcoshy
Chapter 6 1-tanhxtanhy inh inh
page 128 sinhx sinhy
_ coshx coshy _ tanh x +tanh y
14 sinhxsinhy ~ 1+tanhxtanhy
Example 6.2 Other hyperbolic functions coshxcoshy
Page 133 1 1 2tanh x
cothx=——, sechx= , COSechx =— = 2= o
Exercise 6B tanh x cosh x sinh x
Q.2 . 1
Inverse hyperbolic functions E.g. Find .!‘ /%2 + 2% +10 dx
artanhx:lln(“—xj, X2+ 2% +10 = (x +1)" +9
2 1-x s )
References: || arcoshx = In(X+x/x2 —1) = f%dx = f—/lizdx
Chapter 6 1 VXT+2x+10 1(x+1)"+9
Pages 130-134 arsinhx:ln(x+\/x2+1) w11\ T 2
=] arsinh (—j = arsinhl-arsinh —
Exercise 6C d ( hx) 1 >4 ’
-15€ © —(arcoshx) = ——
Q. 4(i), 5(), dx Jx2 -1 > i3 3(1+v2)
6 (i),(ii), 7 =In(l+\/§)—ln i = |=In| ——2
i(arsinhx)=; 3 V9 2+13
dx Vx?+1
1 .X
Jﬁdx = arsinh §+ c FP2; Further Methods for Advanced
Xx“+a Mathematics
J' 1 dx = arcosh X+ ¢ Version B: page 9
Jx% - a? a Competence statements a4, 5, 6, 7, 8




Summary FP2 Option 2: Investigation of Curves —1 m

References: The locus of a point is the path traced out by The curve with iy
Chapter 7 the point as it moves according to a given rule. || equation
Pages 138-142 || There are three ways to describe the locus : 4¢° +y* =9isan !
Cartesian equation ellipse. ﬁ\
A relationship between the x and y coordinates i}
of the point. f(x,) = 0 The parametric G j T
Parametric equation equations are: :
The coordinates, x and y are related via a 3 ) 4
parameter. x = f(z), y = g(?). x= ECOST' y=3sinT $
Polar equation
Each point in the plane is described in terms of || giving the polar equation r = ——————
the distance from an origin (called the Pole) V3cos® 6+1
and the angle turned through anticlockwise
from a fixed line through the pole. » = f(6). E.g. Convert the polar equation = 3
References Conversion between forms 3c05°0+1
Chapter 7 Polar - Cartesian and Cartesian - Polar 10 CarESian fanmt
Pages 142-145 Use 2 =x*+)% x=rcosd,y=rsin@ r=yx’+y° and cosé’:f:>x2+y2=73 29
r X 1
orcosﬁ:f,sinezZ Xyt
; ' ' =>xi+)yt= A +)7) =1= S
Exercise 7A Parametric - Cartesian 3 +x7+ ) 4x% +)?
Q.1(), 2,8 Eliminate the parameter from the equations 42412 =9
giving the relationship between x and y.
Parametric—Polar
First convert to Cartesian. E.g. »=1+ 2sind contains a loop.
References: Loops and cusps
Chapter 7 A loop is a part of the curve that traces out one
Pages 148-155 || area by passing through a given point twice.
A cusp is a point on a curve where two arcs of
the curve meet with coincident tangents. A
Example 7.2
Page 156
r =1+ sind has a cusp.
References: Symmetry and nodes
Chapter 7 A point where a curve crosses itself is called a
Pages 155-157 || Node.
If two values of the parameter of a parametric
equation give the same point, then that point is
a node.
Rgﬁeretn(r:e; ' Asymptotes
Pagesa§’5%-159 Horizontal and vertical asymptotes were E.g. Find the equations of the asymptotes of the
introduced in FP1. Some curves also have 2,35 4
oblique asymptotes. curve y =1+ X 7Y% and draw the graph.
Example 7.3 If the equation of a curve can be rewritten in x—2
Page 158 the form y = ax + b + f(x) where f(x) tends to
zero as x tends to infinity then the line The curve can be rewritten
y =ax + b is an oblique asymptote. _
Exercise 7A y=l+x+5+x_ =x+6+x_2-“ |
Q-3(0). (i) = vertical asymptote is |
x=2 R
FP2; Further Methods for Advanced Mathematics /—\ﬂl
Version B: page 10 _ _ '|
Competence statements C1, 2, 3, 4, 5 and oblique asymptote is w1
© MEI y=x+6 |
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W=

References:
Chapter 7
Pages 160-162

Families of curves
Curves with a common property are called a family of
curves.
Eg.y=x’—4x+1lisa
curve known as a parabola.

For different values of «, 4|
y =x*—4x + ais a family
of curves. 6ty
a=2
Exercise 7B
Q.2 a=1 7 .
A B 2 56
a=-1 E \/
Eq
References: Using Calculus
Chapter 7 Calculus can be used when the curve is given in any of

Pages 172-177

Exercise 7C

Q.6

the three forms :

o To find equations of tangents and normals

o To determine maximum and minimum points

e To find maximum and minimum distances from the
origin.

E.g. Investigate the family of curves with polar
equation » = 1 + asin@ for different values of a.

Two curves are shown on the previous page
witha=21anda=2.
a =0 gives a circle.

The curves shown are for a = 0.5, 1.5, 2.5 and
3.5.

a=15

s

a=25

References:
Chapter 7
Pages 184-195

Example 7.5
Page 191

Exercise 7D
Q.3,6,7

Exercise 7E

Q.6

Conics

If S is a fixed point and d a fixed line, then the locus of
a point P which moves so that the ratio of the distance
to the point and to the line is constant is a conic.

The value of the ratio, e, is called the

eccentricity. P

PS| = c[PM| M

e =1 gives a parabola
0 <e<1givesan ellipse d
e > 1 gives a hyperbola

In their simplest forms the cartesian equations of the
conics are:

Parabola: y* = 4ax

Ellipse: —+§_1
When a = b the ellipse becomes a circle: x* + y* = a®
2 2

LX)
Hyperbola; — —-=—-=1
P a® b

2

When a = b the hyperbola is rectangular: x* — y* = a°

this can be rewritten XY = ¢?

In their simplest forms the parametric equations of the
conics are:

Parabola: x=ar’, y=2at

Ellipse: x=acost, y=bsin¢

When a =5 the ellipse becomes a circle: x=acost, y=asin¢
Hyperbola: x =asect, y=btant

When a =5 the hyperbola is rectangular and can be transformed to

; c
x=ct, y=—
t

E.g. The tangent at the point P (ap? 2ap) on the
parabola x = a*, y = 2at meets the x-axis at T
and the normal at P meets the x-axis at N. Find
the area of the triangle PNT.

dy Y dy_}

dx
At any point, — = 2at, =
YR G T T T e

At P the gradient of the tangent is 1
p

= Tangent has equation y —2ap = 1 (x—ap?)
p

= py=x+ap’

<
e

= Wheny =0,x=—ap’
= T(-ap?,0)
Normal at P has equation

y=2ap=-p(x-ap®) ~ 1
= y+ px =2ap +ap®

= When y =0, x = 2a + ap?

= N(2a+ap®,0)

In triangle TPN, length of base = TN
= 2a+2ap?

Height = y coordinate of P = 2ap

= Area = %(Za-t- 2ap2)2ap = 2a2p(1+ pz)

FP2: Further Methods for Advanced
Mathematics

Version B: page 11

Competence statements C6, 7, 8
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