AS Level Mechanics 1

	What You Need To Know	Ô	Ŷ
1. Mathematical Modelling	 Use of assumptions in simplifying reality. Mathematical analysis of models. Interpretation and validity of models. This includes commenting on the modelling assumptions made when using the terms such as particle, light, inextensible string, smooth surface and motion under gravity. Refinement and extension of models. 		
2. Kinematics in 1 and 2 Dimensions	 Displacement, speed, velocity, acceleration. Understanding the difference between displacement and distance. Sketching and interpreting kinematics graphs, and use the gradient and area under graphs to solve problems. Use the constant acceleration equations. Vertical motions under gravity. Average speed and average velocity. Application of vectors in 2D to represent position velocity or acceleration. Use of unit vectors i and j Magnitude and direction of quantities represented by a vector. Finding position, velocity, speed and acceleration of a particle moving in 2D with constant acceleration. Problems involving resultant velocities, including solution using either vectors or vector triangles. 		
3. Static and Forces	 Drawing force diagrams, identifying forces present and clearly labelling diagrams. Force of gravity. Friction, limiting friction, coefficient of friction and the relationship of F ≤ μR. Normal reaction forces. Tensions in strings and rods, thrust in rods. Modelling forces as vectors. Only in 2D Finding the resultant force acting on a particle. Knowledge that the resultant force is zero if the body is in equilibrium. This is used to find unknown forces on a body at rest. 		

4. Momentum	 Concept of momentum. The principle conservation of momentum applied to 2 particles. 	
5. Newton's Laws of Motion	 Newton's 3 laws of motion in 1D and 2D. Simple applications of the above to the linear motion of a particle of constant mass. Including particles moving up or down an inclined plane. Use of F ≤ μR as a model for dynamic friction. 	
6. Connected Particles	 Connected particle problems that include: 2 particles connected by a light inextensible string passing over a smooth fixed peg Car and a trailer etc. 	
7. Projectiles	 Motion of a particle under gravity in 2D and be aware of any assumptions you make. Calculate the range, time of a flight and maximum height. Also the initial speed or angles of the projectile. Modification of equations to take account of the height of release. 	