

MEI Structured Mathematics

Module Summary Sheets

Mechanics 1 (Version B: Reference to new books)

Topic 1: Motion

Topic 2: Constant Acceleration

Topic 3: Force and Newton's Laws

Topic 4: Applying Newton's second law along a line

Topic 5: Vectors

Topic 6: Projectiles

Topic 7: Forces and motion in 2 dimensions

Topic 8: General motion

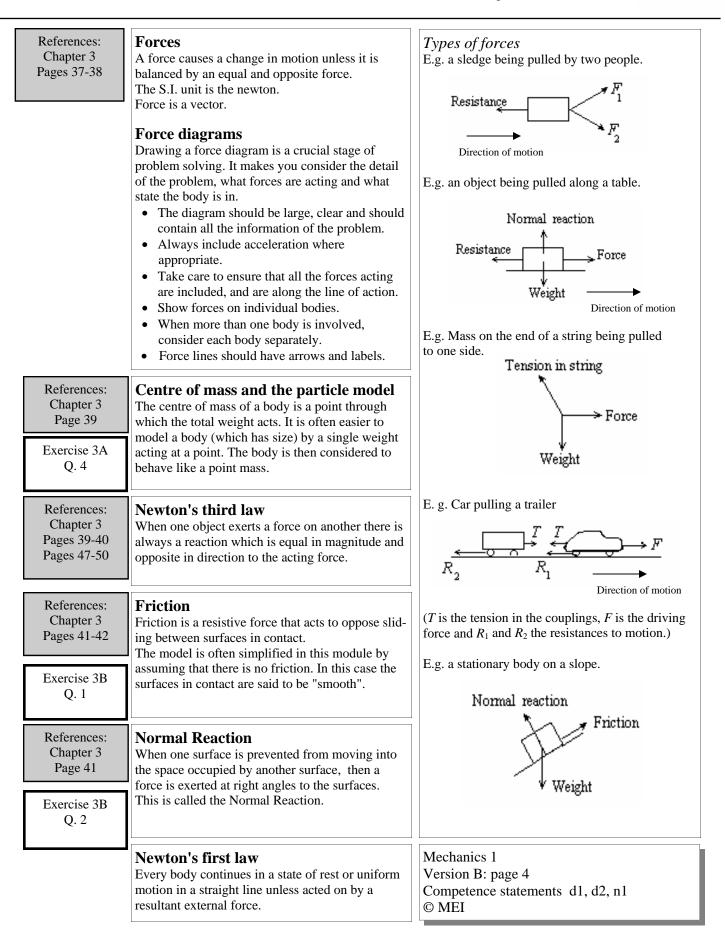
Purchasers have the licence to make multiple copies for use within a single establishment

© MEI, November 2004

MEI, Oak House, 9 Epsom Centre, White Horse Business Park, Trowbridge, Wiltshire. BA14 0XG. Company No. 3265490 England and Wales Registered with the Charity Commission, number 1058911 Tel: 01225 776776. Fax: 01225 775755.

References: Chapter 1 Pages 1-4 Exercise 1A Q. 3	Terminology Displacement <i>s</i> : distance in a certain direction Distance is the magnitude of the displacement Velocity <i>v</i> : rate of change of displacement Speed is the magnitude of the velocity Acceleration <i>a</i> : rate of change of velocity Retardation (deceleration) is –ve acceleration	A scalar is a quantity that has magnitude only A vector is a quantity that has magnitude and direction. vector scalar displacement distance velocity speed acceleration
References: Chapter 1 Pages 5-8 Exercise 1B Q. 3 References: Chapter 1 Pages 10-11 Exercise 1C Q. 5	GraphsTime is plotted on the horizonatal axis.Displacement- time graphThe velocity at a point is the gradient of the curve.Velocity-time graphAcceleration at a point is the gradient of the graph at that point.Average Velocity = $\frac{\text{total displacement}}{\text{total time}}$ Average Acceleration = $\frac{\text{change in velocity}}{\text{time}}$	E.g. A car travelling at constant speed goes up a motorway for 50 miles, turns round and immedi- ately travels back. The first part takes 50 mins and the second part takes 70 mins. $displacement (mls) \\ 50 - \frac{1}{50} - \frac{1}{120} time \\ (mins) \\ displacement = 0 Distance = 100 miles \\ Average Vel = 0 Average Speed = 50 mph \\ Velocity for first part = 60 mph \\ Velocity for second part = -43 mph (to 3 s.f.)$
References: Chapter 1 Pages 12-15 Exercise 1D Q. 6	 Areas under graphs The area between a speed-time graph and the <i>x</i>- axis represents the distance travelled. The area between a velocity-time graph and the <i>x</i>- axis represents the displacement. An area below the axis is taken as negative. When the velocity (or speed) is modelled by constant acceleration then the sections of the velocity-time graph will be straight lines. The area under the graph will therefore be a triangle, trapezium or rectangle and can therefore be calculated easily be elementary mensuration. If the graph is a curve (i.e. not constant acceleration) then the area can be found by integration or estimated by numerical approximation (see C 2).	E.g. the graph represents the motion of a train between 2 stations. (i) Find the acceleration for each part of the journey. (ii) How far apart are the two stations? $\begin{pmatrix} \nu \\ (ms^{-1}) \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Mechanics 1 Version B: page 2 Competence statem © MEI	ents k1, k2, k3, k4	Area $B = 60.40 = 2400$ Area $C = \frac{1}{2}60.40 = 1200$ Total = 4200 metres.

References: Chapter 2 Pages 20-25	Constant acceleration formulae v = u + at $v^2 = u^2 + 2as$ $s = displacement$ t = time	E.g. A body moves from rest in a straight line with an acceleration of 2 ms ⁻² . Find its displacement after 4 sec. u = 0, a = 2, t = 4 Using $s = ut + \frac{1}{2}at^2$
Example 2.1 Page 24	$s = ut + \frac{1}{2}at^{2}$ $s = vt - \frac{1}{2}at^{2}$ $u = \text{initial velocity}$ $v = \text{final velocity}$ $a = \text{acceleration}$	$\Rightarrow s = 0 + \frac{1}{2} \times 2 \times 4^2 = 16 \text{ i.e. the displacement is 16 metres.}$
Exercise 2A Q. 7	 s = 1/2 (u + v)t When velocity is constant s = ut Always define the positive direction Units must be consistent Equations are for constant acceleration 	E.g. A particle is hit across ice with an initial velocity of 10 m s ⁻¹ . If the retardation is 0.6 m s ⁻² find how long it takes to stop and how far it has travelled. u = 10, v = 0, a = -0.6 Using $v = u + at \Rightarrow 0 = 10 - 0.6t \Rightarrow t = \frac{50}{3}$ Using $s = ut + \frac{1}{2}at^2$ $\Rightarrow s = 10\frac{50}{3} - \frac{1}{2} \times 0.6 \times \left(\frac{50}{3}\right)^2 = \frac{250}{3}$
References: Chapter 2 Page 26	Vertical motion due to gravity In free fall under gravity a body will fall towards the centre of the earth This may be modelled by a constant acceleration g (approximately 9.8ms ⁻²)	i.e. the time is $16\frac{2}{3}$ sec and the displacement is $83\frac{1}{3}$ metres E.g. A stone is thrown upwards from the top of a tower of height 40 m with a speed of 14 m s ⁻¹ . Find the greatest
Exercise 2A Q. 3	 If a body is thrown upwards At highest point v = 0 v is negative on the way down a = -g Motion up and down is symmetrical until it returns to its starting point Displacement is negative below the point of projection 	height and the time taken to reach the ground. Taking the origin to be where the the stone is thrown: With $u = 14$, $v = 0$, $a = -9.8$ Using $v^2 = u^2 + 2as$ $\Rightarrow 0 = 196 - 2 \times 9.8 \times s$ $\Rightarrow s = 10$; Greatest ht = 10 + 40 = 50 metres. When $s = -40$, using $s = ut + \frac{1}{2}at^2$ $\Rightarrow -40 = 14t - \frac{1}{2} \times 9.8 \times t^2$
References: Chapter 2 Pages 30,31	Non-zero displacement The formulae above assume $s = 0$ when $t = 0$. If the particle is not at the origin but at $s = s_0$ when $t = 0$, the formula $s = ut + \frac{1}{2}at^2$ becomes	$\Rightarrow 4.9t^{2} - 14t - 40 = 0$ Solving for t by the quadratic formula and taking +ve root as time > 0 \Rightarrow t \approx 4.62 \Rightarrow the time is 4.62 secs. E.g. Example above, taking the origin to be the ground. With u = 14, v = 0, a = -9.8 Using v ² = u ² + 2a(s - s_{0})
Exercise 2B Q. 3, 4	$s - s_0 = ut + \frac{1}{2}at^2$. You need to replace <i>s</i> by $s - s_0$ in every equation.	$\Rightarrow 0 = 196 - 2 \times 9.8 \times (s - 40)$ $\Rightarrow s = 40 + \frac{196}{2 \times 9.8} = 40 + 10 = 50$ $\Rightarrow \text{Distance} = 50 \text{ metres. (as above)}$ When $s = 0$, using $s = 40 + ut + \frac{1}{2}at^2$
Mechanics 1 Version B: page 3 Competence staten © MEI	nents k7, k8	$\Rightarrow 0 = 40 + 14t - \frac{1}{2} \times 9.8 \times t^{2}$ $\Rightarrow 4.9t^{2} - 14t - 40 = 0 \Rightarrow t \approx 4.62 \text{ taking +ve root}$ $\Rightarrow \text{ the time is } 4.62 \text{ secs (as above)}$



Summary M1 Topic 3: Force and Newton's Laws of Motion –2

References: Chapter 3 Pages 47-48	Tension and Thrust When a force has the effect of pulling then there is tension in the connection. When a force has the effect of pushing then there is thrust in the connection. The connection is said to be in compression. A string can only be in tension and that tension has its direction along the line of the string.	E.g. When an engine pulls a truck then there is tension is the connection, but if the engine pushes then there is thrust. $\underbrace{\begin{tabular}{lllllllllllllllllllllllllllllllllll$
References: Chapter 3 Pages 48-49 Exercise 3D Q. 6	ResultantsThe resultant of two vectors is the combinedeffect of those vectors.This can be applied to all vectors: Force, velocity,displacement, etc.A resultant force is the single force which couldreplace a system of forces.EquilibriumWhen a body is in equilibrium, (at rest or movingwith constant velocity) the forces on it balance.i.e. the resultant force in any direction is zero.	E.g. A train with a driving force of F experiencing resistance of R. $R \longrightarrow F$ If the two forces are equal and opposite then the train will either remain at rest or move at constant speed. If $F > R$ then there will be an acceleration in the direction of <i>F</i> .
References: Chapter 3 Pages 49-50 Exercise 3C Q. 6 References: Chapter 3 Pages 50-51	Newton's second Law Acceleration is proportional to force. $F=ma$ The unit of force is the newton. A force of 1 newton will give a mass of 1 kg an acceleration of 1 m s ⁻² .Weight The mass of an object is related to the amount of substance. It is a scalar quantity. The weight is the force of gravity pulling the body towards earth. $W = mg$ Note: Society in general gets the definition mud- dled (e.g. a bag of potatoes weighs 5 kg, whereas this is actually the mass).	E.g. An overall force of 20 N acting on a body with mass 10 kg produces an acceleration of $a \text{ m s}^{-2}$. Using $F = ma$ gives $20 = 10a \Rightarrow a = 2 \text{ m s}^{-2}$ If the body is initially at rest then $v = at$ and $s = \frac{1}{2}at^2$. So after 3secs the velocity in the direction of the force is 6 m s^{-1} and the displacement is 9 m. E.g. The weight of 2 kg of apples is 2g Newtons. If $g = 9.8 \text{ m s}^{-2}$ then $W = 19.6 \text{ N}$. (g is not always 9.8 m s ⁻² on the surface of the earth but it is often taken to be this value or in exercises the value of 10 m s ⁻² is sometimes used. On the surface of the moon the value of g is very different and so the weight of 2 kg of apples will be different.)
References: Chapter 3 Pages 52-53 Example 3.6 Page 53 Exercise 3D Q. 4	 Pulleys A pulley is used to change the direction of a force. A pulley is usually modelled as being smooth. The result of this is that when a string passes over the pulley the tension in the string is the same either side of the pulley. Mechanics 1 Version B: page 5 Competence statements n1, n2 MEI 	E.g. If $m_1 = m_2$ then the system is in equilibrium. If $m_1 = 2$ kg, $m_2 = 3$ kg then the system is not in equilib- rium. m_2 will accelerate downwards and m_1 upwards. (The pulley must be smooth and the string light and inex- tensible.)

References: Chapter 4 Pages 58-59 Exercise 4A Q. 1(i),(v)	Equation of motionIf there is a resultant force on a body then it is notin equilibrium and there will be an acceleration inthe direction of the force. $\mathbf{F} = m\mathbf{a}$ (Newton's 2nd law)If there is no resultant force on a body then it is inequilibrium. That means that the particle is eitherat rest or moving with constant velocity.	E.g. A car of mass 500 kg accelerates at 1.5 m s ⁻² . Resistive forces are 2 N per kg. Find the driving force, <i>F</i> . Resultant Force = mass × acceleration $\Rightarrow F - 500 \times 2 = 500 \times 1.5$ $\Rightarrow F = 1000 + 750 = 1750$ N
		E.g. The driver changes the forward force to 700N. What will happen to the car?
References: Chapter 4 Page 62 Exercise 4B Q. 5	 Solving problems Draw a large, clear, complete force diagram, showing the direction of any motion A body will either be accelerating or in equilibrium. Show acceleration on the force diagram. Obtain equations by resolving in the direction of acceleration and using <i>F</i> = <i>ma</i> Make it clear which object each equation applies to a final direction of acceleration of acceleration and using <i>F</i> = <i>ma</i> 	R $700 - 500 \times 2 = 500a$ $\Rightarrow 500a = 700 - 1000 = -300$ $\Rightarrow a = -0.6$ so the car will decelerate.
References: Chapter 4 Pages 65-67 Exercise 4C Q. 1, 4	• Solve the equations. Connected Bodies Draw a force diagram for each body separately. Obtain equations by considering each body separately. If motion is in the same direction, we can consider the system as one body, provided "internal" forces are not required.	E.g. If $m_1 = m_2$ then the system is in equilibrium. If $m_1 = 2$ kg, $m_2 = 3$ kg then the system is not in equilib- rium. m_2 will accelerate downwards and m_1 upwards. $m_2g - T = m_2a$ $T - m_1g = m_1a$
References: Chapter 4 Page 67	Mathematical Modelling Mathematical modelling is making assumptions in order to simplify the mathematics. Carrying out experiments will enable you to compare your model to reality. Examples of modelling: All forces act through a point Pulleys are smooth Strings are light and inextensible An object is a particle	E.g. An engine of mass 20 tonnes is pulling a truck of mass 15 tonnes. Resistances to motion are 1N per kg. If the driving force is 40kN find the accel- eration and the tension in the coupling. $\overrightarrow{R_2} \qquad \overrightarrow{R_1}$ For the whole train Total resistances = 35000 $F = ma \Rightarrow 40000 - 35000 = 35000a$
References: Chapter 4 Pages 74-75	Air resistance The assumption that there is no air resistance is an example of mathematical modelling.	$\Rightarrow a = \frac{5000}{35000} = \frac{1}{7} \text{ ms}^{-2}$ For the engine: $40000 - T - 20000 = 20000 \times \frac{1}{7}$ $\Rightarrow T = 40000 - 20000 - \frac{20000}{7} \approx 17143 \text{ N}$
	Mechanics 1 Version B: page 6 Competence statements n1, n2, n3 © MEI	Or for the truck: $T-15000 = 15000 \times \frac{1}{7}$ $\Rightarrow T \approx 17143$ N. (N.B. The tension, <i>T</i> , cannot be found by considering the train as a single body.)

References: Chapter 5 Pages 78 - 80	A scalar has magnitude only. A vector has magnitude and direction.	E.g. time, distance, speed, mass are scalars. E.g. displacement, velocity, acceleration, weight are vectors.
Exercise 5A Q. 4	Vector diagrams Vectors are represented by arrowed lines. The length represents the magnitude and the arrow the direction. <i>Parallel vectors</i> are multiples of each other. <i>Displacement vectors</i> have fixed positions, e.g. position vector. <i>Free vectors</i> are not fixed by position, e.g. velocity.	E.g. M is the midpoint of AB where $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. Find \overrightarrow{OM} in terms of \mathbf{a} and \mathbf{b} . $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\mathbf{a} + \mathbf{b} = \mathbf{b} - \mathbf{a}$ $\Rightarrow \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}(\mathbf{b} - \mathbf{a})$
References: Chapter 5 Page 80 Exercise 5A Q. 9	Adding and subtracting $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ tors $\overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}$	$\vec{OM} = \vec{OA} + \vec{AM}$ $= \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) = \frac{1}{2}(\mathbf{b} + \mathbf{a})$
References: Chapter 5 Pages 84-87	The <i>x</i> - <i>y</i> plane The position vector of a point P is given by the vector from the origin \vec{OP} .	E.g. $\mathbf{a} = 3\mathbf{i} - 4\mathbf{j}$, $\mathbf{b} = 5\mathbf{i} + \mathbf{j}$ Find (i) $\mathbf{a} + \mathbf{b}$, (ii) $\mathbf{a} - \mathbf{b}$, (iii) k such that $\mathbf{a} + k\mathbf{b}$ is parallel to the x-axis.
Exercise 5B Q. 6	Unit Vectors have magnitude 1 i and j are used to denote unit vectors in the x and y directions. The vector \overrightarrow{OP} can be thought of as a translation from	(i) $\mathbf{a} + \mathbf{b} = (3\mathbf{i} - 4\mathbf{j}) + (5\mathbf{i} + \mathbf{j}) = 8\mathbf{i} - 3\mathbf{j}$ (ii) $\mathbf{a} - \mathbf{b} = (3\mathbf{i} - 4\mathbf{j}) - (5\mathbf{i} + \mathbf{j}) = -2\mathbf{i} - 5\mathbf{j}$ (iii) $\mathbf{a} + k\mathbf{b} = (3\mathbf{i} - 4\mathbf{j}) + k(5\mathbf{i} + \mathbf{j})$ (2+51): (1-4):
References: Chapter 5 Pages 89-91	O to P. If P has coordinates (x, y) then $\vec{OP} = x\mathbf{i} + y\mathbf{j} \text{ or } \begin{pmatrix} x \\ y \end{pmatrix}$	$= (3+5k)\mathbf{i} - (\mathbf{k}-4)\mathbf{j}$ Parallel to x - axis means zero j component $\Rightarrow k = 4 \Rightarrow \mathbf{a} + k\mathbf{b} = 23\mathbf{i}$
Exercise 5C Q. 4 References: Chapter 5	The magnitude of the vector \overrightarrow{OP} , $ OP $, is the distance from O to P. If P has coordinates (x, y) then $ OP = \sqrt{x^2 + y^2}$ The direction of the vector \overrightarrow{OP} is usually taken to be the angle, measured anti - clockwise from the Ox axis. The direction of \overrightarrow{OP} is $\tan^{-1} \frac{y}{x}$.	Three dimensions Results from 2-D are simply extended into 3-D. A third axis, the z-axis, and its corresponding unit vector, k , is introduced. If the point P is at position (x, y, z) then $\overrightarrow{OP} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
Pages 93-94 Exercise 5D Q. 5	Resolving vectors A vector v can be split into components in two (usually) perpendicular directions by resolving it into those directions.	E.g. resolving v horizontally and vertically gives $\mathbf{v} = v\cos\alpha \mathbf{i} + v\sin\alpha \mathbf{j}$ $\mathbf{j} \neq \mathbf{i} \neq \mathbf{i}$
References: Chapter 5 Pages 97, 98 Exercise 5E Q. 7	Velocity triangles The sum of 2 velocities can be found by drawing a triangle where two sides represent the two vectors in magnitude and direction. The third side represents the resultant in magnitude and direction. The triangle can be drawn accurately or solved using trigonometry.	Mechanics 1 Version B: page 7 Competence statements v1, v2, v3, v4, v5 © MEI

Summary M1 Topic 6: Projectiles

E.g. a particle is projected at 20 m s⁻¹ at an angle of References: **Projectiles** 60° to the horizontal from a cliff 50 m above sea Chapter 6 A projectile is a body given an initial velocity which level. Find Pages 101-104 then moves freely under gravity. (i) the greatest height, (ii) how far out it hits the sea, **Modelling Assumptions:** (iii) the angle and speed at which it hits the sea. no air resistance • This answer demonstrates the use of horizontal the body is a particle and so there is no spin and vertical motion. Exercise 6A Q. 1(i),2(i), Horizontal and vertical components can be analysed y ↑ 20 ms⁻¹ 3(ii) separately (or a vector approach may be used), with the positive direction upwards and the origin at the point of projection. i.e. $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ or $v_y = u_y - gt$, $v_x = u_y$ $s = ut + \frac{1}{2}at^2$ or $y = u_yt - \frac{1}{2}gt^2$, $x = u_xt$ 50 m References: The acceleration vector is $\begin{pmatrix} 0 \\ -g \end{pmatrix}$ ms⁻² Chapter 6 Pages 107-108 (i) Vertically: $u_v = 20\sin 60 = 10\sqrt{3} \approx 17.3, a = -g$ The initial velocity vector is $\begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} u \cos \alpha \\ u \sin \alpha \end{pmatrix}$ ms⁻¹ $v_{y} = 17.3 - 9.8t$: at the top, $v_v = 0$, $17.3 = 9.8t \Longrightarrow t \approx 1.77$ secs $y = 17.3t - 4.9t^2 \implies s_y = 17.3 \times 1.77 - 4.9 \times 1.77^2 \approx 15.3$ where *u* is the initial speed Exercise 6B and α is the angle of projection. \Rightarrow Greatest height = 50 + 15.3 \approx 65.3 metres Q. 2 (ii) Vertically: $y = 17.3t - 4.9t^2$ and y = -50 at sea level. **Properties:** $\Rightarrow -50 = 17.3t - 4.9t^2 \Rightarrow 4.9t^2 - 17.3t - 50 = 0$ The path is parabolic $\Rightarrow t \approx \frac{17.3 \pm \sqrt{1280}}{9.8} \approx 5.42 \text{ sec (taking the +ve root.)}$ It is symmetric about a vertical line through its Exercise 6C highest point Q.4 The greatest height occurs when $v_y = 0$ Horizontally: $x = 20\cos 60t = 10 \times 5.42 \approx 54.2$ metres The body returns to the level of projection when y = 0(iii) Vertically: $v_y = u_y - 9.8t = 17.3 - 9.8 \times 5.42 \approx -35.8$ Horizontally: $v_x = u_x = 10$ Speed and direction can be found at any point by considering the magnitude and direction of velocity. \Rightarrow Speed = $\sqrt{10^2 + 35.8^2}$ Position can be found by considering the $= 37.1 \text{ ms}^{-1}$ $\Rightarrow \text{ Angle at sea} = \tan^{-1}(\frac{35.8}{10})$ 35.8 accomponents x and y. Constant acceleration formulae are used. References: Chapter 6 ≈ 74.4 **Special results:** Page 118 Know how to use (but it is not necessary to learn E.g. using vectors to solve the question above: them Exercise 6D Time of flight: $t = \frac{2u\sin\alpha}{c}$ (i) $\mathbf{u} = \begin{pmatrix} 10 \\ 17 3 \end{pmatrix}, \mathbf{a} = \begin{pmatrix} 0 \\ -98 \end{pmatrix}$ Q. 2 Range: $x = \frac{u^2 \sin 2\alpha}{g}$: Max. Range: $R = \frac{u^2}{g}$ (when $\alpha = 45^\circ$) $\mathbf{v} = \mathbf{u} + \mathbf{a}t \Longrightarrow \mathbf{v} = \begin{pmatrix} 10\\17.3 \end{pmatrix} + \begin{pmatrix} 0\\-9.8 \end{pmatrix} t = \begin{pmatrix} 10\\17.3 - 9.8t \end{pmatrix}$ References: Chapter 6 Greatest height: $y = \frac{u^2 \sin^2 \alpha}{2g}$ $v_y = 0$ when $17.3 = 9.8t \Longrightarrow t = \frac{17.3}{0.8} \approx 1.77$ Page 126-128 $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2 = \begin{pmatrix} 10t\\ 17.3t \end{pmatrix} + \begin{pmatrix} 0\\ -4.9t^2 \end{pmatrix} = \begin{pmatrix} 10t\\ 17.3t - 4.9t^2 \end{pmatrix}$ Equation of trajectory: $y = x \tan \alpha - \frac{g}{2u^2} x^2 (1 + \tan^2 x)$ Exercise 6E Q. 6 When t = 1.77 s = $\begin{pmatrix} 17.7 \\ 15.3 \end{pmatrix}$ Mechanics 1 Version B: page 8 giving greatest height = 50 + 15.3 = 65.3 m. Competence statements: y1, y2, y3, y4, y5, k11 © MEI

References: Chapter 7 Pages 130-133 Exercise 7A Q. 5	Resolving forces Force is a vector. The technique of resolving vectors, and therefore forces, has been covered in chapter 5. The component of <i>R</i> in a direction at an angle θ to the direction of <i>R</i> is $R\cos\theta$. The component of <i>R</i> in a direction perpendicular to the line of action of <i>R</i> is 0, as $\cos 90 = 0$.	E.g. A body of mass 6 kg is being pulled at constant speed up a smooth slope of angle 25^{0} to the horizontal by a force, <i>F</i> . Resolving along slope <i>F</i> - 6gsin25 = 0 <i>F</i> = 24.8 N Resolving perpendicular to the slope: <i>N</i> - 6gcos25 = 0 <i>N</i> = 53.3 N
References: Chapter 7 Pages 134-135 Exercise 7B Q. 3	Equilibrium By Newton's 1st Law, if there is no acceleration in a given direction then there is no component of force in that direction. A body is in equilibrium if there is no overall force in any direction. (i.e. the sum of resolved forces in any direction is zero.) This applies to the particle model where all forces acting are considered to act through a point.	Or, if i , j are along and perpendicular to the slope: $\begin{pmatrix} F - 6\sin 25\\ N - 6g\cos 25 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$ Or, if i , j are horizontal and vertical: $\begin{pmatrix} F\cos 25 - N\sin 25\\ F\sin 25 + N\cos 25 - 6g \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$
References: Chapter 7	To check for equilibrium it is sufficient to check for no force in any two directions. Usually this will be in two perpendicular directions. Triangle of forces When there are three non-parallel forces	E.g. In the example above, the three forces are in equilibrium as there is no acceleration. $N = 6g\cos 25 = 53.3 \mathrm{N}$
Pages 134-135	acting on a body in equilibrium then the three forces may be represented in magni- tude and direction by the sides of a triangle, taken in order. (See example.)	$F = 6g\sin 25 = 24.8 \mathrm{N}$
References: Chapter 7 Pages 147-148 Exercise 7C Q. 5	Newton's 2nd law in 2 dimensions When a body is not in equilibrium then it will have an acceleration in a given direc- tion. This may be found by resolving or by using vectors ($\mathbf{F} = \mathbf{ma}$ is a vector equation) i.e. $\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = m \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$	E.g. in the example above, the force, F, is increased to 30N. Find the acceleration and the value of N. Resolving along slope: 30 - 6gsin25 = 6a $\Rightarrow a = 0.86 \text{ m s}^{-2}$ Resolving perpendicular to the slope: N = 6gcos25 = 53.3 N
	Or $F_1\mathbf{i} + F_2\mathbf{j} = m(a_1\mathbf{i} + a_2\mathbf{j})$	E.g. The force, F now makes an angle of 10° with the slope. How does this affect the value of N ? Resolving perpendicular to the slope:
Mechanics 1 Version B: page 9 Competence statements d1, d3, d4, d5, d6, d7, n1, n2, n4, n5 © MEI		$N + 30\sin 10 = 6g\cos 25$ = 53.3N $\Rightarrow N = 53.3 - 5.2 = 48.1N$ N has decreased by 5.2N Forces in N

MEI

