M2 Essentials: Summary of AQA Mechanics 2 content not provided in the formula book

Moments and equilibrium

 $Moment = Force \times Distance$

 λx T = - $\lambda = modulus of elasticity (N)$ T = tension(N)l = natural length(m)x = extension(m)

Proof of Elastic Potential Energy formula

Hooke's law

$$T = \frac{\lambda x}{l} \implies Work Done by Tension = \int_0^e \frac{\lambda x}{l} dx = \left[\frac{\lambda x^2}{2l}\right]_0^e = \frac{\lambda e^2}{2l}$$

For a *rigid body* to be in equilibrium: *Resultant Force* = 0*Resultant Moment* = 0

Centre of mass

The point at which the mass, and hence weight, of an object can be thought to act. For uniform symmetrical shapes, this is always on any lines of symmetry.

$$\bar{x} = \frac{m_1 x_1 + m_2 x_2 + \cdots}{m_1 + m_2 + \cdots}$$
(Sum of the moments = Total moment)

Energy

Power Power is the *rate* of doing work (that is, the rate of transferring energy)

$$P = \frac{WD}{t} \qquad P = F_m v$$

$$P = power(W)$$

$$WD = work \ done(J) \qquad F_m = motive \ force(N)$$

$$t = time(s) \qquad v = velocity(ms^{-1})$$

Variable acceleration

$$v = \frac{dx}{dt}$$
 $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ $x = \int v \, dt$ $v = \int a \, dt$

 $\int f(v)$

Work Done (energy transferred):
$$WD = Fx$$
Circular motionKinetic Energy: $KE = \frac{1}{2}mv^2$ $w = \frac{1}{2}mv^2$ $u = r\omega | a = r\omega^2 | a = \frac{v^2}{r} | F = mr\omega^2 | F = \frac{mv^2}{r}$ Gravitational Potential Energy: $GPE = mgh$ $w = Angular speed (rad s^{-1})$ $v = Speed (ms^{-1})$ $F = Centripetal force (rad s^{-1})$ Elastic Potential Energy: $EPE = \frac{\lambda e^2}{2l}$ Differential equations $If a is a function of v: a = \frac{dv}{dt} = f(v) \Rightarrow \int \frac{1}{f(v)} dv = \int 1 dt$