Mechanics 2 : Revision Notes

1. Kinematics and variable acceleration

Displacement (x)
$\mathrm{x}=\mathrm{f}(\mathrm{t})$

differentiate \begin{tabular}{c}
Velocity (v)

$\mathrm{v}=\frac{d x}{d t}$

$\xlongequal{\text { differentiate }}$

Acceleration (a)

$\mathrm{a}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$
\end{tabular}

You may be asked to use the ACCELERATION to calculate the Force acing on a particle at a given time using Force = mass \mathbf{x} acceleration

In two or 3 dimensions

- differentiate each of the $\mathrm{i}, \mathrm{j} \mathrm{k}$ components as individual functions but don't forget to include the $\mathrm{i}, \mathrm{j}, \mathrm{k}$ in your answer with the new functions
- Integrating - you need ' +c ' in each of the $\mathrm{I}, \mathrm{j}, \mathrm{k}$ components which you can then evaluate using given conditions

Example

A particle moves so that at time t seconds it's velocity $\boldsymbol{v} \mathrm{ms}^{-1}$ is given by $\boldsymbol{v}=\left(4 t^{3}-12 t\right) \boldsymbol{i}+5 \boldsymbol{j}+8 t \boldsymbol{k}$ When $t=0$, the position vector of a particle is $(-2 \boldsymbol{i}+4 \boldsymbol{k})$

$$
x=\left(t^{4}-6 t+c_{x}\right) \boldsymbol{i}+\left(5 t+c_{y}\right) \boldsymbol{j}+\left(4 t^{2}+c_{z}\right) \boldsymbol{k}
$$

$\mathrm{t}=0$
$\mathrm{x}=-2 \mathrm{i}+4 \mathrm{k} \quad c_{x}=-2 \quad c_{y}=0 \quad c_{z}=4$

$$
x=\left(t^{4}-6 t-2\right) \boldsymbol{i}+5 t \boldsymbol{j}+\left(4 t^{2}+4\right) \boldsymbol{k}
$$

Find the time when the particle is moving. \qquad you need to consider velocity and its components

- Moving due west - parallel to the idirection j component of velocity $=\mathbf{0}$
- Moving due north - parallel to the jirection icomponent of velocity $\mathbf{=} \mathbf{0}$

MAGNITUDE - if you are asked to find the magnitude of the velocity (SPEED) or acceleration or force at a given time - you need to use Pythagoras

2. Moments and Equilibrium

(force x perpendicular distance from the point to the force)
Moment of a force about $A=F d$

Moment of the force about $\mathrm{B}=F d \sin \theta$

SI units of a moment are Nm
Clockwise - negative
Anticlockwise - positive

Equilibrium : For a rigid body to be in equilibrium

- the resultant force must be zero - the total moment of all the forces must be zero

In solving problems

- draw a diagram to show all the forces - weight - 'normal' - tensions
- by taking moments about a point you can ignore the forces acting at that point
- resolve - vertically and horizontally

Example

A ladder of length 3 m and mass 20 kg , leans against a smooth, vertical wall, so that the angle between the horizontal ground and the ladder is 60 . Find the magnitude of the friction and the normal reaction forces that act on the ladder, if it is in equilibrium.

Step 1: Draw a diagram showing all of the forces

Step 2 : Resolving Vertically

$R_{2}=20 \mathrm{~g} \quad \mathrm{R}_{2}=196 \mathrm{~N}$

Step 3 : Taking moments at the base

$20 \mathrm{~g} \times 1.5 \cos 60^{\circ}=\mathrm{R}_{1} \times 3 \sin 60^{\circ}$
$\mathrm{R}_{1}=56.6 \mathrm{~N}$
Step 4 : Resolving horizontally

$$
\mathrm{F}=\mathrm{R}_{1}=56.6 \mathrm{~N}
$$

3. Centres of Mass

- Use a table to set out your workings
- Make sure you show the values substituted into the formula $\bar{x}=\frac{\sum m x}{\sum m}$ or equivalent
- 'Light' means you can ignore the 'weight' of the framework connecting the particles
- When a body is suspended in equilibrium from a point the centre of mass is directly below the point of suspension

Centre of mass of a lamina

- When working with a uniform lamina you need to work with the area instead of mass (as the area of each part will be proportional to its mass)

Example
The diagram shows a uniform rectangular lamina that has had a hole cut in it. The centre of mass of the lamina is a distance x from $A D$ and a distance y from $A B$. Find x and y.

	Large Rectangle	Small Rectangle	Lamina
Area	$96 \mathrm{~cm}^{2}$	$10 \mathrm{~cm}^{2}$	$86 \mathrm{~cm}^{2}$
\mathbf{x} (from AD)	6 cm	3.5 cm	x
\mathbf{y} (from AB)	4 cm	2 cm	y

Large rectangle $=$ small rectangle + lamina

$$
96 \times 6=86 x+10 \times 3.5
$$

$$
x=6.30 \mathrm{~cm}
$$

$$
96 \times 4=86 y+10 \times 2
$$

$$
y=4.23 \mathrm{~cm}
$$

4. Energy ,Work and Power

$$
\begin{array}{ll}
\hline \text { Kinetic energy }=\frac{1}{2} m v^{2} & \text { Every moving body has kinetic energy } \\
\text { Work done by a force = Fs } & \text { (either increase or decrease the total energy of the system) }
\end{array}
$$

Example

A box is initially at rest on a smooth horizontal surface. The mass of the box is 10 kg . A horizontal force of magnitude 15 N acts the box as it slides 6 m . Find the speed of the box when it has travelled 6 m .

Initial : KE = 0 (box is at rest)
Change in energy due to work done $=15 \times 6=\mathrm{J}$
After $6 \mathrm{~m} K E=90 \mathrm{~J}$

$$
\frac{1}{2} 10 v^{2}=90 \quad v=4.24 m s^{-1}
$$

Example

A stone of mass 0.5 kg is thrown over a cliff at a speed of $4 \mathrm{~ms}^{-1}$. It hits the water at a speed of $15 \mathrm{~ms}^{-1}$. Assuming that there is no resistance to the motion of the stone calculate the height of the cliff.

Initially:

$K E=\frac{1}{2} \times 0.5 \times 4^{2}$

$$
=4 \mathrm{~J}
$$

When it hits the water
$K E=\frac{1}{2} \times 0.5 \times 15^{2}$
$=56.25 \mathrm{~J} \quad$ Gain in $\mathrm{KE}=$ loss in PE
$0.5 \times g \times h=56.25$
$\mathrm{h}=11.5 \mathrm{~m}$
Elasticity - Hooke's Law
$T=\frac{\lambda e}{l} \quad \mathrm{e}-$ extension $\quad l=$ natural length $\quad \lambda$-modulus of elasticity
$E P E=\frac{\lambda e^{2}}{2 l} \quad$ elastic potential energy of a stretched or compressed spring Derived using work done by a variable force $\int f(x) d x$ so $E P E=\int_{0}^{e} \frac{\lambda e}{l}$ de

- A particle will not remain at rest if tension (due to elasticity) is present
- Maximum extension will occur when velocity $=0$ (turning point)
- At maximum speed - acceleration $=0$ (if vertical problem $\mathrm{T}=\mathrm{mg}$)

Example

A sphere of mass 150 grams is attached to one end of an elastic string of natural length 50 cm and modulus of elasticity 5 N . The sphere is released from rest at O and falls vertically. Determine the maximum speed of the sphere.

At max speed - acceleration $=0$ resultant force $=0$ so $T=m g$

$$
\frac{5 e}{0.5}=0.15 \times 9.8 \quad e=0.147 m
$$

At this point GPE lost $=$ KE gained + EPE gained

GPE lost : Change in height $=0.5+0.147 \mathrm{~m}$

$$
\text { Loss in GPE }=0.15 \times 9.8 \times 0.647
$$

$$
=0.951 \mathrm{~J}
$$

Gain EPE $=\frac{5(0.147)^{2}}{2 \times .05}=0.108 \mathrm{~J}$ so gain in $K E=0.951-0.108=0.843 \mathrm{~J}$

$$
\begin{aligned}
\frac{1}{2} \times 0.150 \times v^{2} & =0.843 \\
v & =3.35 \mathrm{~ms}^{-1}
\end{aligned}
$$

POWER (measured in Watts)
Power $=\frac{\text { work done }}{\text { time taken }} \quad$ rate of doing work/rate of gain of kinetic energy
Power $=\mathrm{Fv}$

5. Motion in a circle

Angular speed $\boldsymbol{\omega}$ - measures the angle (radians) turned though per second (rad s${ }^{-1}$)
Remember in a full turn there are 2π radians
Velocity has magnitude $r \omega$ (r = radius) and is directed along a tangent to the circle Acceleration $=\boldsymbol{r} \omega^{2}$ or $\frac{v^{2}}{r}$ and is directed towards the centre of the circle

Movement in a horizontal circle with constant speed

- Resultant of vertical forces $=0$
- $\mathrm{F}=$ ma can be applied radially - acceleration acting towards the centre

Movement in a vertical circle

- Use of $K E=1 / 2 \mathrm{mv}^{2}$ and GPE $=\mathrm{mgh}$ to calculate v (use this to calculate a)
- MAXIMUM speed - at lowest point
- FULL REVOLUTION v at the highest point ≥ 0
- A particle travelling on a circle will leave the circle when $R=0$

Remember to split the 'weight' of a particle so that you are resolving parallel to the acceleration when using $\mathrm{F}=\mathrm{ma}$
$m g \cos x-R=m a$

6. Differential Equations

Forming Equations

- Use $\mathrm{F}=\mathrm{ma}$ to find the acceleration
- Use $a=\frac{d v}{d t}$ to form the differential equation
- If necessary rearrange into the form given - shows your steps clearly

Solving

- Separate the variables
- Integrate both 'sides' REMEMBER to include the + c
- Use given conditions to calculate c (initially implies $t=0$)

Useful integrals

$$
\begin{aligned}
& \int \frac{1}{v} d v=\ln |v|+c \quad \int \frac{1}{a v+b} d v=\frac{1}{a} \ln |a v+b|+c \\
& \int \sin a v d v=-\frac{1}{a} \cos a v+c \\
& \int \cos a v d v=\frac{1}{a} \sin a v+c
\end{aligned}
$$

