STATISTICS 2

Summary Notes

1. Discrete Random Variables

- discrete if a list could be made of all of the possible values the variable could take
- Probability Distribution - a list or tables showing the probability of each value occurring - tree diagram may be needed to help you calculate the probabilities - remember to multiply along the branches

The sum of the probabilities = 1

- Probability Function (sometimes easier than making a list)
e.g. X is the result when a fair tetrahedral die is rolled $P(X=x)$ $\begin{cases}1 / 4 & x=1,2,3,4 \\ 0 & \text { otherwise }\end{cases}$
- Cumulative Distribution Function - shows $P(X \leq x)$ for all x

x	<1	$1-$	$2-$	$3-$	≥ 4
$P(X \leq x)$	0	$1 / 4$	$1 / 2$	$3 / 4$	1

MEAN $=\mu=E(X)=\sum x_{i} p_{i} \quad$ (Expectation of X)
VARIANCE $=\sigma^{2}=E\left(X^{2}\right)-(E(X))^{2}$

$\left.\begin{array}{rl} \mathrm{X} & 0 \\ \mathrm{P}(\mathrm{X}=\mathrm{x}) & 0.5 \\ \mathrm{E}(\mathrm{X}) & = \\ & 0.2 \end{array}\right)$				

Expectation of a function of a r.v.

$$
\begin{aligned}
& E(g(X))=\sum g\left(x_{i}\right) p_{i} \\
& E\left(4 x^{3}\right)=\sum 4 x^{3} p \quad E\left(\frac{1}{x}\right)=\sum \frac{1}{x} p \\
& E\left(4 X^{3}\right)=4 \times 0^{3} \times 0.5+4 \times 1^{3} \times 0.2+4 \times 2^{3} \times 0.3 \\
& =
\end{aligned}
$$

- Mean and Variance of functions of a r.v

$$
\begin{array}{lll}
E(a X)=a E(X) & E(X+b)=E(X)+b & E(a X+b)=a E(X)+b \\
\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X) & \operatorname{Var}(X+b)=\operatorname{Var}(X) & \operatorname{VAR}(a X+b)=a^{2} \operatorname{Var}(X)
\end{array}
$$

2. The Poisson Distribution

- number of events occurring in a fixed interval of time or space

Conditions

- time of each event (or position) is independent of previous events
- probability of each event occurring in a given interval of time(space) is fixed
- two evens cannot occur at exactly the same time (or position)

$$
P(X=x)=\left\{\begin{array}{cl}
e^{-\lambda} \frac{\lambda^{x}}{x!} & x=0,1,2 \ldots \ldots . \\
0 & \text { otherwise }
\end{array} \quad \begin{array}{c}
\text { is the rate at which events occur } \\
\text { (on average) in the required } \\
\text { interval of time or space }
\end{array}\right.
$$

Example

The rate at which calls are received by a call centre is 2 calls per minute
Work out the probability that exactly 6 calls are received in 4 minutes.
Average 2 calls per minute \Rightarrow Average 8 calls per 4 minutes

$$
P(X=6)=e^{-8} \frac{8^{6}}{6!}
$$

USING TABLES - tables give the $\mathrm{P}(\mathrm{X} \leq \mathrm{x})$ - remember to use the correct λ

USING THE RECURRENCE FORMULA - if you need to calculate a succession of values of $x: P(X=1) P(X=2) P(X=3) \ldots$.

$$
P\left(X=x_{n}\right)=\frac{\lambda}{n} \times P\left(X=x_{n-1}\right)
$$

eg If we know $P(X=1)$ then

$$
P(X=2)=\frac{\lambda}{2} P(X=1)
$$

$$
P(X=3)=\frac{\lambda}{3} P(X=2)
$$

Sum of INDEPENDENT random variables

Make sure both variables averages for the same unit of time(or space) before adding.
Example - At a checkpoint on average 300 cars pass per hour and the mean time between lorries is 5 minutes. Find the probability that exactly 6 vehicles pass the point in a 1 minute period

Cars 300 per hour $\Rightarrow 5$ cars per minute
Lorries 12 per hour $\Rightarrow 0.2$ lorries per minute
Vehicles $=5.2$ per minute $P(x=6)=e^{-5 \cdot 2} \frac{5 \cdot 2^{6}}{6!}=0.1515$

Binomial - questions on the Poisson distribution can include use of the binomial theorem - look for Probability when multiples of the time interval are needed

Example -

What is the probability that exactly 6 cars pass the checkpoint in at least 3 or the next 4 minutes?

Probability of success $=0.1515 \quad n=4$
$P(X \geq 3)=P(X=3)+P(X=4)$

$$
\begin{aligned}
P(X=3)+P(X=4) & ={ }_{4} \mathrm{C}_{3}(0 \cdot 1515)^{3}(1-0 \cdot 1515)+{ }_{4} \mathrm{C}_{4}(0 \cdot 1515)^{4} \\
& =0.0123
\end{aligned}
$$

Easy Marks: Mean = Variance $=\lambda$

- occasionally a question will ask you to give a reason why the variable may follow a Poisson Distribution - simple answer the mean is approximately equal to the variance make sure you use an unbiased estimate of the population variance $\left(\sigma_{n-1}\right)^{2}$ for your comparison

3. Continuous Random Variables

- the variable can take an infinite number of possible values
$-P(X=0)=0$ and $P(X<t)=P(X \leq t)$
- Probability Density Functions $f(x)$
- area under the graph represents the probability
- sketching the graph is always a good idea - evaluate at the interval bounds to plot the key points - check for quadratic or linear to get the general shape of each section
- TOTAL area under the curve in the required interval $=1$
- If linear graph then you can use formulae for the area of triangle $\mathrm{f}_{\mathrm{f}(x)}$ trapezium
- If quadratic - integrate to calculate probabilities

AREA $A=\int_{2}^{3} \frac{1}{18} x^{2} d x=\frac{19}{54}$
AREA B $=1 / 2 \times 2 \times 0.5$

$$
P(2<X<5)=\frac{19}{54}+1 / 2=\frac{23}{27}
$$

If asked to find an unknown within the function (often denoted k) - sketch the graph - set the total area $=1$ to and solve

- (Cumulative) Distribution Function $F(x)$
- gives the probability that the value is less than $x-P(X<x)$ or $P(X \leq x)$
- integral of $f(x)$
- useful when finding medians $F(x)=0.5$, Lower Quartile $F(x)=0.25$ etc.....

Example :Find $F(x)$ for the probability density function defined in example A
Consider each section of the graph !
$\frac{\text { SECTION A - quadratic }}{\text { If } 0<\mathrm{c}<3 \text { then }}$
SECTION B - linear
If $3<\mathrm{c}<5$ then
$P(X<c)=1 / 2+\int_{3}^{5} \frac{1}{4}(5-x) d x=\frac{1}{8}\left(10 c-c^{2}-17\right)$
$0 \leq x \leq 3$
$F(x)=\left\{\begin{array}{l}1 \\ \frac{1}{8}\left(10 c-c^{2}-17\right. \\ 1\end{array}\right.$

$$
3 \leq x \leq 5
$$

$x \geq 5$

$$
f(x)= \begin{cases}\frac{1}{b-a} & a<x<b \\ 0 & \text { otherwise }\end{cases}
$$

Probability found by working out the area of a rectangle

$$
F(x)= \begin{cases}0 & x \leq a \\ \frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x \geq b\end{cases}
$$

$E(X)=$ mean $=1 / 2(a+b)$
$\operatorname{Var}(X)=\sigma^{2}=\frac{1}{12}(b-a)^{2} \quad$ If you are given the mean and the variance solve simultaneously to find the values of a and b

4. Estimation

- Useful formulae to learn \bar{x}
To calculate the mean

$$
\begin{aligned}
& \bar{x}=\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& \overline{\mathrm{x}}=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}
\end{aligned}
$$

$$
\left(\sigma_{\mathrm{n}}\right)^{2}
$$

the sample variance
Sample Var $=\frac{\sum(x-\bar{x})^{2}}{n}$
Sample Var $=\frac{\sum \mathrm{x}^{2}}{\mathrm{n}}-$ mean 2
Sample Var $=\frac{\sum f x^{2}}{\sum f}-$ mean 2

$$
\left(\sigma_{n-1}\right)^{2}
$$

the Unbiased Estimate of the population variance
$\frac{\mathrm{n}}{\mathrm{n}-1} \times$ SampleVariance

- CONFIDENCE INTERVALS

- Interpretation of a $95 \% \mathbf{C I}$ - different samples of size n lead to different values of \bar{x} and hence to different 95% confidence Intervals. On average 95% of these intervals will contain the true population mean.
-Check the degree of accuracy required e.g. 3 d.p., 3 sf
- Write confidence intervals as
(Lower limit , Upper limit)

Population Variance Given - Any sample size - Use Z tables (Standard Normal)

- Population Normally distributed

If looking for a 95% look up 0.975 in the percentage tables
Population Variance unknown - Large sample size >30-Use Z tables

- because of the large sample size - can use Z values due to the Central Limit Theorem population does not need to be normally distributed.

Example

A firm offers free bottled water to all 135 employees who work the night shift. The amounts they consume on the first night have a mean of 960 ml with a standard deviation of 240 ml .

Calculate a 90\% confidence interval for the mean stating any assumptions you have made.
$\mathrm{n}=135$
mean $=960$
sample variance $=57600$
population variance $=58029.9$
90\% CI Z=1.6449
$960 \pm 1 \cdot 6449 \times \sqrt{\frac{58029 \cdot 9}{135}}$

Assumptions

- the data can be regarded as a random sample
- the large sample size - Central Limit theorem - no restrictions in the distribution of the population

Population Variance unknown - Small sample size < 30 - Use \mathbf{t} tables (d.f = $\mathbf{n - 1}$)

$$
\begin{aligned}
& \overline{\mathrm{x}} \pm \boldsymbol{t}_{\alpha} \times \sqrt{\frac{\text { popn var }}{\mathrm{n}}} \\
& \text { Use } \mathrm{t} \text { tables and } \mathrm{n}-1 \text { degrees of freedom }(\gamma)
\end{aligned}
$$

Example

20 bottles are selected from a production line, The contents of each is recorded (x ml)

$$
\sum x=1518.9 \quad \sum(x-\bar{x})^{2}=7.2895
$$

Stating any assumptions you make calculate a 95% confidence interval for the mean

$$
n=20
$$

mean $=75.945$
sample variance $=0.364475$
population variance $=0.38366$
$75.945 \pm 2.093 \times \sqrt{\frac{0.38366}{20}}$
degrees of freedom $=19$
$95 \% \mathrm{Cl}$ T= 2.093

Assumptions - contents are normally distributed - sample selected randomly
5. Hypothesis Testing

STEP 1
State the null hypothesis- always in terms of $\mathbf{H}_{\mathbf{0}}: \boldsymbol{\mu}=\mathbf{a}$ - never \bar{x}

STEP 2

State the alternative $\quad H_{1}: \mu \neq \mathbf{a} \quad 2$ tail test - divide significance level by 2 before using tables to find the critical value
$H_{1}: \mu>a \quad 1$ tail test - positive critical value
$H_{1}: \mu<a \quad 1$ tail test - negative critical value
STEP 3 - Test statistic \mathbf{Z} or \mathbf{T}

Variance Known
or $\mathrm{n}>30$

Unknown Variance and $\mathbf{n}<30$

- List the variables
- calculate the statistic

STEP 4

- Use tables to find the critical value $\quad-\mathrm{n}-1$ degrees of freedom if using t
- check for 1 or 2 tail
-Sketch a graph - mark the critical value
- shade the critical/ rejection region
- mark the position of your test statistic

STEP 5

As $\ldots>\ldots$ There is no sufficient evidence at the $\ldots \%$ significance level that the mean differs from \mathbf{a} - Accept H_{0}

As ... > ... There is sufficient evidence at the ... \% significance level that the mean differs from \mathbf{a} - Therefore accept H_{1} and conclude that

Significance level : - If the value of the test statistic falls in the critical region then the outcome is said to be significant at the \qquad \% level

TYPE 1 ERROR - The probability of obtaining a value of a test statistic in the critical region even when the null hypothesis is correct - Rejecting H_{0} and accepting H_{1} when H_{0} is actually correct

TYPE 2 ERROR - The probability is not fixed, since it depends upon the extent to which the value of μ deviates from the value given in H_{0}. If the μ is close to this value then the probability of Type 2 error is large \mathbf{H}_{0} is accepted even though it is incorrect

6. Chi-squared Goodness of fit Test

- can be used for testing whether a die is biased or whether variables are independent
- test statistic involves squares - only interested in upper limit critical values
- always state \mathbf{H}_{0} before starting - The variables are independent
- to calculate expected frequencies $\frac{\text { row total } \times \text { column total }}{\text { TOTAL }}$
- check totals for expected frequencies - for calculation errors

Test Statistic

Special case 2×2 table -1 degree of freedom

$$
X^{2}=\sum \frac{(|O-E|-0.5)^{2}}{E}
$$

General

$$
X^{2}=\sum \frac{(O-E)^{2}}{E}
$$

O: Observed Frequency
E: Expected Frequency under H_{0}

- EXPECTED FREQUENCY MUST BE GREATER THAN 5-group appropriately remember to adjust degrees of freedom -number of groups used - 1
- DO NOT use percentages - always frequencies

CHI-SQUARED TABLES $\mathbf{- n} \mathbf{- 1}$ degrees of freedom $\mathbf{-} \mathrm{n}$ is the number of groups used in the calculation

Example : The table shows the fate of the passengers on the titanic grouped according to class. Test at the 1% level if there is a relationship between class and the chance of survival

	Survived	Died	Total
1st Class	200	123	323
2nd Class	119	158	277
3rd Class	181	528	709
Total	500	809	1309

HYPOTHESIS

H_{0} : The chance of survival is independent of the class of travel
H_{1} : There is an association between the class of travel and the chance of survival.
EXPECTED RESULTS if independent

	Survived	Died
1st Class	$323^{*} 500 / 1309=\mathbf{1 2 3 . 4}$	$323^{*} 809 / 1309=\mathbf{1 9 9 . 6}$
2nd Class	$277^{*} 500 / 1309=105.8$	$277^{*} 809 / 1309=\mathbf{1 7 1 . 2}$
3rd Class	$709 * 500 / 1309=\mathbf{2 7 0 . 8}$	$709 * 809 / 1309=\mathbf{4 3 8 . 2}$

All expected frequencies greater than 5 so no need to group 6 groups used so 5 degrees of freedom needed in tables

TEST STATISTIC

$$
\begin{aligned}
X^{2} & =\frac{(200-123 \cdot 4)^{2}}{123 \cdot 4}+\frac{(119-105 \cdot 8)^{2}}{105 \cdot 8}+\ldots \ldots \ldots \ldots \ldots+\frac{(709-438 \cdot 2)^{2}}{438 \cdot 2} \\
& =127.8
\end{aligned}
$$

CRITICAL VALUE $-\chi^{2}=15 \cdot 086 \quad(1 \%-5$ degrees of freedom $)$

