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1 Combinations of random variables 

Expected mean and variance for  X ± Y 

Reminder 

For any two random variables  X  and  Y 

E[aX]  =  aE[X]    and    Var[aX]  =  a2 Var[X] 

E[X + Y]  =  E[X] + E[Y] and E[X – Y]  =  E[X] – E[Y]    

and for two independent random variables 

Var[X + Y]  =  Var[X] + Var[Y] and Var[X – Y]  =  Var[X] + Var[Y].  

 

    

Combining independent normal random variables Y 
 
If  X1  and  X2  are independent normal random variables 

 X1  ~  N(µ1, σ1
2)    and    X2  ~  N(µ2, σ2

2)     
then  X1  +  X2   and  X1  – X2    are also normal random variables 

 X1  +  X2 ~  N(µ1 + µ2, σ1
2 + σ2

2)     

and X1  –  X2 ~  N(µ1 – µ2, σ1
2 + σ2

2)     
 

Example: X1  and  X2  are independent normal random variables   

X1  ~  N(21, 12)    and    X2  ~  N(9, 6). 

Find the expected mean and standard deviation of  X1 – 2X2. 

 

Solution:  E[X1] =21,  Var[X1] = 12    and    E[X2]  = 9,  Var[X2]  = 6 

⇒       E[2X2]  =  2E[X2]  =  2 × 9 = 18 

and Var[2X2]  =  22 × Var[X2]  =  4 × 6 = 24 

⇒ E[X1 – 2X2]  =  E[X1]  –  E[2X2]  =  21 – 18  =  3 

and Var[X1 – 2X2]  =  Var[X1]  +  Var[2X2]  =  12 + 24  =  36 

⇒ the expected mean and standard deviation of  X1 – 2X2  are  3  and √36 = 6.   Answer 
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Example: The weights of empty coffee jars are normally distributed with mean 0.1 kg and standard 
deviation 0.02 kg. The weight of coffee in the jars is normally distributed with mean 1 kg and 
standard deviation 0.06kg.  

Find the distribution of 12 full jars of coffee. 

What is the probability that 12 full jars weigh more than 13⋅5 kg? 
Solution: Let X1, X2, ... X12 be the weights of 12 empty jars and Y1, Y2, ... Y12 be the weights of coffee 

in the jars.  X ~ N(0⋅1, 0⋅022)   and  Y ~ N(1, 0⋅062). 

Let W be the total weight of 12 full jars then  W = X1 + X2 + ...  + X12  +  Y1 + Y2 + ... + Y12. 

Then  E[W]  =  12 E[X]  +  12 E[Y]  =  12 × 0⋅1 + 12 × 1  =  13⋅2 
and, assuming independence,   

Var[W]  =  12 Var[X]  +  12 Var[Y]  =  12 × 0⋅022 + 12 × 0⋅062  = 0⋅048. 

As we are combining normal distributions  

the distribution for 12 full jars is N(13.2, 0⋅048).  Answer 
 

The probability that 12 full jars weigh more than 13⋅5 kg is 

       13 5 13 21 1 (1 37) 0 0853
0 048
⋅ − ⋅ −Φ = −Φ ⋅ = ⋅ ⋅ 

   to 3 S.F.  Answer.  

 

 

2 Sampling 

Methods of collecting data 

Taking a census 

A census involves observing every member of a population  
and is used if 
 the size of the population is small 
or if extreme accuracy is required. 

Advantages 
it should give a completely accurate result, a full picture. 

Disadvantages 
very time consuming and expensive 
it cannot be used when testing process destroys article being tested 
information is difficult to process because there is so much of it.  

Sampling 

Sampling involves observing or testing a part of the population. 
It is cheaper but does not give such a full picture. 
The size of the sample depends on the accuracy desired (for a varied population a large sample will be 
required to give a reasonable accuracy).   
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Simple random sampling 
Every member of the population must have an equal chance of being selected.   

Using random number tables 

To take a simple random sample of size  n  from a population of  N  sampling units first make a list and 
give each member of the population a number. Then use random number tables to select the sample. 

We ignore any numbers which do not refer to a member of the population – for example using three 
figure random numbers for a population numbered from 001 to 659 we would ignore numbers from 660 
to 999. 

Also we ignore the second occurrence of the same number. 

Advantages 
the numbers are truly random and free from bias 
it is easy to use 
each member has a known equal chance of selection 

Disadvantages 
it is not suitable when the sample size is large.  

Lottery sampling 
A sampling frame is needed – identifying each member of the population. The name or number of each 
member is written on a ticket (all the same size, colour and shape), and the tickets are all put in a 
container which is then shaken. Tickets are then drawn without replacement. 

Advantages 
the tickets are drawn at random. 
it is easy to use. 
each ticket has a known chance of selection (considered as constant as long as the sample size is 
much smaller than the total number of tickets). 

Disadvantages 
it is not suitable for a large sample 
a sampling frame is needed. 

 

Systematic sampling 
First make an ordered list, and divide into equal groups each of size 50 (or??). 

Second select every 50th (or ??) member from the list. 

In order to make sure that the first on the list is not automatically selected random number tables must be 
used to select the member in the first group, then select every 50th (or ??) after that. 

Used when the population is too large for simple random number sampling. 

Advantages 
simple to use 
suitable for large samples 

Disadvantages 
only random if the ordered list is truly random.  
it can introduce bias  
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Stratified sampling 
First divide the population into exclusive (distinct) groups or strata and then select a sample so that the 
proportion of each stratum in the sample equals the proportion of that stratum in the population. 

 

Example:  How would you take a stratified sample of 50 children from a school of 500 pupils divided 
as follows:  

 Boys Girls 

Upper sixth 30 40 

Lower sixth 30 30 

Fifth form 70 60 

Fourth form 60 70 

Third form 50 60 
 

Solution: As 50 is 1/10 of the total population,  1/10 of each stratum should be selected in the sample. 
Thus the sample would comprise 

 Boys Girls 

Upper sixth 3 4 

Lower sixth 3 3 

Fifth form 7 6 

Fourth form 6 7 

Third form 5 6 
 

and simple random number sampling would be used within each stratum. 

Used when 
the sample is large 
the population divides naturally into mutually exclusive groups. 

Advantages 
it can give more accurate estimates (or a more representative picture) than simple random number 
sampling when there are clear strata present. 
It reflects the population structure. 

Disadvantages 
within the strata the problems are the same as for any simple random sample 
if the strata are not clearly defined they may overlap.   

 

Sampling with and without replacement 
Simple random sampling is sampling without replacement in which each member of population can be 
selected at most once. 

In sampling with replacement each member of the population can be selected more than once: this is 
called unrestricted random sampling.  
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Quota sampling 
This is a non-random method. 

First decide on groups into which the population is divided and a number from each group to be 
interviewed to form quotas. 

Then go out and interview and enter each result into the relevant quota.  
If someone refuses to answer or belongs to a quota which is already full then ignore that persons reply and 
continue interviewing until all quotas are full. 

Used when it is not possible to use random methods - for example when the whole population is not 
known (homeless in a big city). 

Advantages 
can be done quickly as a representative sample can be obtained with a small sample size 
costs are kept to a minimum 
administration is fairly easy. 

Disadvantages 
it is not possible to estimate the sampling errors (as it is not a random process) 
interviewer may not put into correct quota 
non-responses are not recorded 
it can introduce interviewer bias  

 

 

Primary data 
Primary data is data collected by or on behalf of the person who is going to use the data. 

Advantages 
collection method is known  
accuracy is known 
exact data needed are collected 

Disadvantages 
costly in time and effort   

 

Secondary data 
Secondary data is data not collected by or on behalf of the person who is going to use it. The data are 
second-hand – e.g. government census statistics. 

Advantages 
cheap to obtain 
large quantity available (e.g. internet) 
much has been collected year on year and can be used to plot trends 

Disadvantages 
collection  method may not be known 
accuracy may not be known 
it can be in a form which is difficult to handle 
bias is not always recognised. 
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3 Biased & unbiased estimators 
 

Example: A bag contains a large number of coins, of which 25 are 2p coins and 35 are 5p coins. 

(a) X is the value of a single coin draw from the bag. Find the expected mean of all coins in 
the bag, µ = E[X]. 

Samples of size 3 are now drawn from the bag. 

(b) Find the sampling distribution of and the expected value of (i) the median, and (ii) the 
mean. 

(c) (i) The median, Q2, is used as an estimator of the mean of all the coins, µ. Show that 
Q2 is a biased estimator of µ, and find the bias. 

 (ii) The mean, 𝑋, is used as an estimator of the mean of all the coins, µ. Show that 𝑋 is 
an unbiased estimator of µ. 

(d) kQ2 is now used as an unbiased estimator of the mean of all the coins. Find the value of k. 

Solution: 

(a) µ = E[X] = ∑𝑥𝑖𝑝𝑖 =  25 × 2 + 3
5 × 5 = 3 ∙ 8 

(b) Sample Probability median mean 

 (2,2,2)      �25�
3

           =  8
125 2 2 

 (2,2,5), (2,5,2), (5,2,2) 3 × �25�
2

× 3
5  =   36

125 2 3 

 (2,5,5), (5,2,5), (5,5,2) 3 × 2
5 × �35�

2
 =   54

125 5 4 

 (5,5,5)     �35�
3

            =  27
125 5 5 

 
Sampling distribution 
 
(i) Median    (ii) Mean 

 Q2 = xi pi xipi 𝑋 = xi pi xipi 

 2 8+36
125

 88
125

 2 8
125

 16
125

 

 5 54+27
125

 405
125

 3 36
125

 108
125

 

   493
125

 4 54
125

 216
125

 

    5 27
125

 135
125

 

      475
125

 

⇒  E[Q2] = 493
125

  = 3⋅944 E[𝑋] = 475
125

  = 3⋅8 
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Unbiased estimator:   
If X (usually found from a sample) is used to estimate the value of a population parameter, 
t, then X is an unbiased estimator of t if E[X] = the true value of the parameter t. 

Bias: If an estimator, X, is biased, then the bias is the difference between E[X] and the true value 
of the parameter t. 

(c) (i) The median Q2 is used as the estimate of the mean. 
From part (a) we know that the true value of the mean µ is 3⋅8, and in part (b) we have 
shown that E[Q2] = 3⋅944 
⇒  Q2 is a biased estimator of µ,  
 and the bias is |E[Q2] – true value of µ| = |3⋅944 − 3⋅8| = 0⋅144 

 (ii) The mean 𝑋 is used as the estimate of the mean. 
From part (a) we know that the true value of the mean µ is 3⋅8, and in part (b) we have 
shown that E[𝑋] = 3⋅8 
⇒  E[𝑋] =  the true value of the mean 
⇒ 𝑋 is an unbiased estimator of µ,  
  

(d) If we now use kQ2 as an unbiased estimator of the mean value of all the coins. 

E[kQ2] = k E[Q2] = 493
125

𝑘 

But the true mean µ = 475
125

 

If kQ2 is an unbiased estimator of µ,  E[kQ2] = true value of µ  

⇒ 493
125

𝑘 = 475
125

   ⇒ k = 475
493

. 

 

 

Example: A sample of size 3 is drawn from a binomial distribution B(10, 0⋅25) and the mean, 𝑋, is 
calculated.  

 The probability of success, p, is estimated by �̂� = 1
10
𝑋. Show that �̂� is an unbiased estimator of p. 

 

Solution: E[X] = np = 10 × 0⋅25 = 2⋅5 

 For a sample {X1, X2, X3},   𝑋 = 1
3

(𝑋1 + 𝑋2 + 𝑋3) 

⇒ E� 𝑋 � = E �1
3

(𝑋1 + 𝑋2 + 𝑋3)�  = 1
3

(E[𝑋1] + E[𝑋2] + E[𝑋3])   

⇒ E� 𝑋 � = 1
3

 ×  3 × 2 ∙ 5 = 2 ∙ 5  since E[𝑋𝑖] = E[𝑋] = 2 ∙ 5 , for i = 1, 2, 3 

⇒ E[�̂�] = E � 1
10
𝑋� = 1

10
E�𝑋� = 1

10
 × 2 ∙ 5 = 0 ∙ 25, which is the true value of p 

⇒ �̂� =  1
10
𝑋  is an unbiased estimator of p. 
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Example: A sample of size 4 is drawn from a continuous uniform distribution, U[3, β ]. The mean of 
the sample, 𝑋, is calculated.  

 The upper limit, β, is estimated by �̂� = 2𝑋 − 3. Show that �̂� is an unbiased estimator of β. 
 

Solution: E[X] = 1
2
 (3 + β ) 

 For a sample {X1, X2, X3, X4},   𝑋 = 1
4

(𝑋1 + 𝑋2 + 𝑋3 + 𝑋4) 

⇒ E� 𝑋 � = E �1
4

(𝑋1 + 𝑋2 + 𝑋3 + 𝑋4)�  = 1
4

(E[𝑋1] + E[𝑋2] + E[𝑋3] + E[𝑋4])   

⇒ E� 𝑋 � = 1
4

 ×  4 × E[𝑋]  = E[𝑋]   since E[𝑋𝑖] = E[𝑋], for i = 1, 2, 3, 4 

⇒ E� 𝑋 � =   1
2

 (3 +  β )  

⇒ E��̂�� = E�2𝑋 −  3� = 2E� 𝑋 � − 3 = 2 × 1
2

 (3 +  β ) − 3 =  𝛽,  

⇒ E��̂�� =  𝛽   which is the true value of the (unknown) upper limit, β. 

⇒ �̂� = 2𝑋 − 3  is an unbiased estimator of β. 

 

 

 

 

There is more on biased and unbiased estimators in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

S3 JUNE 2016  SDB   11 

Unbiased estimators of µ and σ 2 

Estimating µ  and σ 2  from a sample 

We usually do not know the mean, µ,  and the variance, σ 2, of a population.  
To estimate these values we take a sample {X1, X2, X3, …, Xn} of size n and calculate  

 the sample mean,  𝑋�  =  1
𝑛
∑𝑋𝑖 , and     

  (𝑠𝑑)𝑥
2  =   1

𝑛
∑𝑋𝑖2   −   𝑋�2  =   1

𝑛
∑(𝑋 −  𝑋�)2  

 these can be compared with the formulae for population variance from the S1 module. 

 

It can be shown that E� 𝑋 �  = the true value of µ   

⇒  𝑋� = �̂�   is an unbiased estimator of the population mean µ. 

It can be shown that  E�(𝑠𝑑)𝑥
2�  =  𝑛−1

𝑛
 σ 2       ….… I 

⇒ (𝑠𝑑)𝑥
2  is a biased estimator of σ 2. 

I  ⇒       E� 𝑛
𝑛−1

(𝑠𝑑)𝑥
2�  = 𝑛

𝑛−1
× 𝑛−1

𝑛
 σ 2  =  σ 2, the true value of the variance 

⇒ 𝑛
𝑛−1

(𝑠𝑑)𝑥
2 = 𝜎�2  is an unbiased estimator of the population variance, σ 2. 

 

(Proofs of these results are given in the Appendix.) 

 

 

Note: the Edexcel course uses both the letters  S2  and  sx
2  to mean the unbiased estimate of  σ 2.  

Also, the term Sample Variance  is used to denote the unbiased estimate of σ 2, the variance of the 
population. 

In these notes I shall always think of the variance, (𝑠𝑑)𝑥
2,  as  1

𝑛
∑𝑋𝑖2   −   𝑋�2  =   1

𝑛
∑(𝑋 −  𝑋�)2 

To find  S2  or  sx
2, the unbiased estimator for σ 2:– 

 

Calculate  (𝒔𝒅)𝒙
𝟐, and then multiply by  𝒏

𝒏−𝟏
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Example: 
The weights of a sample of five chocolate bars produced by a machine were 56, 53, 57, 51 and 54 
grams. Find unbiased estimators for the weight of all chocolate bars produced by that machine. 

 

Solution:       

X 𝑋 − 𝑋� (𝑋 − 𝑋�)2 
56 1⋅8 3⋅24 
53 -1⋅2 1⋅44 
57 2⋅8 7⋅84 
51 -3⋅2 10⋅24 
54 -0⋅2 0⋅04 
271  22⋅8 

 
⇒ 𝑋�  =  1

𝑛
∑𝑋  =   271

5
 =   54⋅2 

⇒   (𝑠𝑑)𝑥
2 = 1

𝑛
∑(𝑋 − 𝑋�)2  =  22∙8

5
 =   4 ∙ 56  

⇒   𝜎�2  =   𝑛
𝑛−1

 (𝑠𝑑)𝑥
2 =   5

4
  ×   4 ∙ 56 =   5 ∙ 7 

 

Answer    Unbiased estimators for the mean and variance of all chocolate bars are  54⋅2 grams 
and 5⋅7 grams2. 

 

 

Example:  The volume of water in each of a sample of 14 litre bottles of water from a day’s 
production is taken. The results are shown below, in ml. 
1023, 1019, 1004, 1011, 1023, 1014, 1017, 1020, 1020, 1010, 1025, 1007, 1016, 1019 

 Find unbiased estimates for the mean and variance of all bottles produced on that day. 

 

Solution: First find the sample mean,    𝑋�,  =  14228
14

  =  1016⋅286…. 

 (finding 𝑋 −  𝑋�  each time) would give unpleasant arithmetic,  

so use (𝑠𝑑)𝑥
2 =  1

𝑛
∑𝑋2    −  𝑋�2   

∑𝑋2  =  14460232 

⇒ (𝑠𝑑)𝑥
2 =  1446032

14
  −    �14228

14
�
2
   =  37⋅06122… 

⇒ S2  = sx
2  =  𝑛

𝑛−1
  (𝑠𝑑)𝑥

2 =   14
14−1

  ×   37 ∙ 06122 …  =   39 ∙ 91209 … 

 

Answer Unbiased estimators for the mean and variance of the whole day’s production are 
1016⋅3 ml and 39⋅91 ml2. 
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Example: The weights of a sample of 15 packets of biscuits are recorded and give the following 
results. 
Σ X = 3797 grams, and  Σ X 2 = 973692. 

 Find unbiased estimators for the mean and variance of all biscuits produced by this 
process. 

Solution: µ  =  𝑋� =  3797
15

= 253 ∙ 133 … = 252 ∙ 1 grams. 

(𝑠𝑑)𝑥
2 =   1

𝑛
∑𝑋2   −   𝑋�2   =   973692

15
  −    �3797

15
�
2
  = 836⋅3156… 

⇒ 𝜎� 2  = 15
14

 × 836 ∙ 3156 … = 896 ∙ 0524 …  =   896 ∙ 1  grams2. 

Answer Unbiased estimators are  �̂� =252⋅1 g,  and  𝜎� 2 = 896⋅1 g2
. 

 

 

Example:  The lengths of 10 rods are measured, and the sample has mean, 𝑋� = 26⋅7 cm and variance 
s2 = 76⋅9 cm2. An eleventh rod has length 30 cm. 
Find (a) the mean and (b) the variance of the sample of 11 rods.  

Solution: (a)    With the sample mean there are no complications. 

 For 𝑛 =  10,   𝑋�10  =  
1

10
�𝑋𝑖

10

𝑖=1

= 26 ∙ 7      ⇒     �𝑋𝑖

10

𝑖=1

= 267 

For 𝑛 =  11,    �𝑋𝑖

11

𝑖=1

= 267 + 30 = 297     ⇒    X11 =  
1

11
�𝑋𝑖

11

𝑖=1

=   
297
11

= 27 𝑐𝑚 

(b)   WARNING: The question refers to the variance of the sample, which means the unbiased 
estimate of the variance of the population. 

𝑠102  = 76⋅9   =  10
(10−1)

 × (sd)10
2   ⇒   (sd)10

2  =   9
10

× 76 ∙ 9 =   69 ∙ 21    

⇒   (sd)10
2  =

1
10

�𝑋𝑖2
10

𝑖=1

−   𝑋�10
2  = 69 ∙ 21 

⇒    �𝑋𝑖2
10

𝑖=1

=   692 ∙ 1 + 10 × 26 ∙ 72  =   7821 

with extra rod  ⇒    �𝑋𝑖2
11

𝑖=1

= 7821 + 302  = 8721 

⇒   (sd)11
2  =

1
11

�𝑋𝑖2
11

𝑖=1

−   𝑋�11
2  =   

8721
11

−  272  =   
702
11

 

⇒     𝑠112   =  
11

(11 − 1)
   (sd)11

2  =   
11
10

×
702
11

  =   70 ∙ 2  𝑐𝑚2    

 
For 11 rods, sample mean is 27 cm, and sample variance is 70⋅2 cm2. 
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4 Confidence intervals and significance tests 
 

Sampling distribution of the mean 
 

X  is a random variable draw from a population with mean  µ  and  standard deviation  σ. 

If  {X1, X2, ... , Xn}  is a random sample of size  n with mean  𝑋  =  
n

XXX n+++ ...21  

then  E[Xi] = µ,  and  Var[Xi] = σ 2,   for i = 1, 2, 3, …, n 
 
and the expected mean of the population of sample means is   

 

E� 𝑋 �   =  



 +++

n
XXX n...

E 21    

 =  ( ) ( )µµµ ...1][E...][E][E1
21 ++=++

n
XXX

n n  

 =   µ. 
 

Also the expected variance of the population of sample means is 

 

Var� 𝑋 �    =  



 +++

n
XXX n...

Var 21      assuming that all the Xi are independent 

 =  ( ) ( )222
2212 ...1][Var...][Var][Var1 σσσ +=++

n
XXX

n n
    

=  𝑛𝜎
2

𝑛2
  = 

n

2σ
 

 

This means that if very many samples were taken and the mean of each sample calculated then the 

mean of these means would be  µ  and the variance of these means would be  
n

2σ .  

It can also be shown that the sample means form a Normal distribution (provided that  n  is ‘large 
enough’). 

We can then say that for samples drawn from a population with mean µ  and variance  σ 2,  

the sampling distribution of the mean is  N(µ,  
𝜎2

𝑛
 ). 
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Central limit theorem and standard error 
 

The central limit theorem states that 

If   {X1, X2, ... , Xn}  is a random sample of size  n  drawn from any population with mean  µ  and 
variance  σ 2  then the population of sample means 

(i) has expected mean  µ 

(ii) has expected variance  
n

2σ  

(iii) forms a normal distribution  if  n  is ‘large enough’. 

 i.e.  







n

X
2

,N~ σµ .  

The central limit theorem is used for sampling when the sample size is ‘large’ (> about 50) as the 
population of sample means is then approximately normal whatever the distribution of the original 
population. 

The standard error of the sample mean is   
𝜎
√𝑛

.  

 

Example: A sample of size 50 is taken from a population of eggs with mean 23⋅4 grams and variance 
36 grams2.  

(i) Find the probability that a single egg weighs more than 25 grams. 

(ii) Find the probability that the sample mean is larger than 25. 

(iii) What assumptions did you make? 

Solution:  

(i) The weight of a single egg, X ∼ N(23⋅4, 62) 

⇒ P(X > 25) = Φ�25−23∙4
6

� = Φ(0 ∙ 27) = 0 ∙ 6064 

(ii) µ  =  23⋅4,  σ 2 = 36    

 The sample mean  𝑋 ∼ N �23⋅4, � 6
√50

�
2
� 

⇒   standard error is  
𝜎
√𝑛

=  6
√50

  =  0⋅848528137 

 𝑋�  ~  𝑁(23 ∙ 4, 0 ∙ 8485 …2 ) 

⇒ P(𝑋� > 25)  =  1 – Φ �25−23∙4
0∙8485…

�   

 = 1 – Φ(1⋅89)  = 1 – 0⋅9706   (from Normal tables) 

 =  0⋅0294. 

 
(iii) We have assumed the Central Limit Theorem: in particular that the sample means form a 

normal distribution . 
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Confidence intervals 

Central Limit Theorem Example 

Example: 
A biscuit manufacturer makes packets of biscuits with a nominal weight of 250 grams. It is known 
that over a long period the variance of the weights of the packets of biscuits produced is 
25 grams2. A sample of 10 packets is taken and found to have a mean weight of 253⋅4 grams.  
Find 95% confidence limits for the mean weight of all packets produced by the machine. 
 

Solution: 
First assume that the machine is still producing packets with the same variance, 25.  

Suppose that the mean weight of all packets of biscuits is  µ  grams then the population of all 
packets has mean µ  and standard deviation 5. 
 

From the central limit theorem we can assume that the sample means form an approximately 

normal population with mean µ and standard error (standard deviation) ==
10
5

n
σ 1⋅5811 

  
95% of the samples will have a mean in the 
region 

 –1⋅96     <     Z     <   1⋅96 
 

We assume that the mean of this sample, 253⋅4, 
lies in this region 
 

⇒ –1⋅9600  <  253∙4−𝜇
1∙5811

  <  1⋅9600 

⇒ –1⋅9600 < 253∙4−𝜇
1∙5811

   and  253∙4−𝜇
1∙5811

 < 1⋅9600 

⇒ µ  – 1⋅9600 × 1⋅5811 < 253⋅4   and  253⋅4 < µ + 1⋅9600 × 1⋅5811 

⇔    µ  < 253⋅4 + 1⋅9600 × 1⋅5811   and  253⋅4 – 1⋅9600 × 1⋅5811  <  µ 

⇔    253⋅4 – 1⋅9600 × 1⋅5811 <   µ   < 253⋅4 + 1⋅9600 × 1⋅5811 

⇔ 250⋅3  <  µ  < 256⋅5 

 

This means that  95%  of the samples will give an interval which contains the mean 

and we say that  [250⋅3 g, 256⋅5 g]  is a  95%  confidence interval  for µ. 
 

This means that there is a 0⋅95 probability that this interval contains the true mean.  

It does not mean that there is a probability of 0⋅95 that the true mean lies in this interval - the true 
mean is a fixed number, and either does or does not lie in the interval so the probability that the 
true mean lies in the interval is either 1 or 0. 

x

f(x)

 

1.96

 

−1.96

 

95%
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In practice we go straight to the last line of the example: 

95% confidence limits are   µ  ± 1⋅9600 × 
𝜎
√𝑛

   since  P(Z –1⋅9600 < z < 1⋅9600)  = 0⋅95 

        tables give  P(Z > 1⋅9600)  =  0⋅025 

90% confidence limits are   µ  ± 1⋅6449 × 
𝜎
√𝑛

   since  P(Z –1⋅6449 < z < 1⋅6449)  = 0⋅90 

        tables give  P(Z > 1⋅6449)  =  0⋅05 

 

Other confidence limits can be found using the Normal Distribution tables. 

 

 

Example: A sample of  64  packets of cornflakes has a mean weight  X  = 510 grams and a variance  

S 2 = 36 grams2. Find 90% confidence limits for the mean weight of all packets. 

(Note that the ‘sample variance’ is taken as the unbiased estimate of  σ 2.) 

Solution: We assume that the sample variance = the variance of the population of all packets 

⇒  S 2 = 36 = σ 2. 
 Now  find standard deviation (standard error) of the sampling distribution of the mean (population 

of sample means), standard error =  6 0 75
64n

σ
= = ⋅  

For 90% confidence limits  z  =  ± 1⋅6449 (remember to use the 4 D.P. tables after the Normal Dist. tables), 
using the sample mean  X  = 510 grams 

⇒ 90% confidence limits are   510  ± 1⋅6449 × 0.75   =   510 ± 1⋅234 

⇒ a  90%  confidence interval is  [508⋅8,  511⋅2]  to 4 S.F.  
  

Note that we have assumed that the unbiased estimate,  S 2  (=36), is the actual variance,  σ 2, of the 
population. 
This is a reasonable assumption as the number in the sample, 64, is large and the error introduced is 
therefore small. 
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Significance testing– variance of population known 

Mean of normal distribution 

Example: 
A machine, when correctly set, is known to produce ball bearings with a mean weight of 84 grams 
with a standard deviation of 5 grams. The production manager decides to test whether the machine 
is working correctly and takes a sample of 120 ball bearings. The sample has mean weight 
83.2 grams. Would you advise the production manager to alter the setting of his machine? Use a 
5% significance level. 

Solution: 

1) H0: µ = 84 grams 

2) H1: µ ≠ 84 grams     ⇒ 2 tail test 

 (Note that the machine is not working correctly if the test result is too high or too low) 

3) 5% Significance level 
4) The Test 

 We assume that the machine is still working with a standard deviation of σ = 5 g. 

 From H0, the mean weight of all ball bearings is assumed to be µ = 84 g. 

 These are the parameters for the population of all ball bearings.  
We want to test a sample mean and therefore need the mean and standard deviation of the 
population of sample means  (the sampling distribution of the sample mean, 𝑋�). 

 Expected mean of the sample means = µ = 84 g. and 

 expected standard deviation of the sample means = standard error =  5 0 456435...
120n

σ
= = ⋅

. 

We have an observed mean of 83⋅2 

For a two-tailed test at 5%, we take 2⋅5% at 
each end 

P(𝑋� < 83⋅2)  = ( )83 2 84
0 456435... ( 1 7527)⋅ −
⋅Φ = Φ − ⋅  

     =  (1 – Φ(1⋅75)) = 0⋅0401 

     = 4⋅01%   >  2⋅5% 

and so not significant at the 5% level. 

 

 

 5) Conclusion 
 Do not reject H0 at the 5% level and advise the production manager that there is evidence that 

he should not change his setting, or that there is evidence that the machine is working correctly,  
etc. 
 

  

x

84 83⋅2 
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Difference between means of normal distributions 

Suppose that X and Y are two independent random variables from different normal distributions – 

X  ~  N(µx,  σx
2)   and   Y  ~  N(µy,  σy

2). 
If samples of sizes nx  and  ny  are drawn from these populations 

then the distributions of the sample means,  𝑋�   and   𝑌�  will be normal  

𝑋� ~  𝑁 �𝜇𝑥, 𝜎𝑥
2

𝑛𝑥
  �   and   𝑌�  ~  𝑁 �𝜇𝑦, 𝜎𝑦2

𝑛𝑦
  � 

𝐸[𝑋� −  𝑌�] = 𝐸[𝑋�] − 𝐸[𝑌�]   and   Var[𝑋� −  𝑌�] = Var[𝑋�] + Var[𝑌�]  

⇒ the differences of the sample means,   𝑋� −  𝑌� ,  will be normal 

(𝑋� −  𝑌�)  ~  𝑁�𝜇𝑥 −  𝜇𝑦,    
𝜎𝑥2

𝑛𝑥
+  
𝜎𝑦2

𝑛𝑦
� 

 

 
Example: The weights of chocolate bars produced by two machines, A and B, are known to be 

normally distributed with variances  σA
2 = 4  and  σB

2 = 3  grams2.  Samples are taken from each 
machine of sizes  nA = 25  and    nB = 16  which have means  123 1 and 124 4A BX X= ⋅ = ⋅  
grams. Is there any evidence at the 5% significance level that the bars produced by machine B are 
heavier than the bars produced by machine A? 

 

Solution:  

Suppose that the mean weights for all bars from the two machines are  µA  and  µB   

H0: µA  =  µB   

H1: µB  > µA      one-tail test  at 5% level 
 

The test statistic is the observed difference between sample means,  

 BX  – AX  = 124⋅4 – 123⋅1 = 1⋅3,   

and we must find the variance of this population of differences of sample means (the sampling 
distribution of differences of sample means). 

Consider the population of differences of sample means  BX  – AX . 

Firstly, for the population of sample means for machine B  

 expected variance Var[ BX ]  = 
16
32

=
B

B

n
σ

 
 

 



 

  S3 JUNE 2016  SDB 20 

and secondly, for the population of sample means for machine A  

 expected variance Var[ AX ]  = 
25
42

=
A

A

n
σ

 
 

and so for the population of differences of sample means 

expected mean = E[ BX  – AX ]  =  µA  -  µB  = 0     (from H0) 

and     Var[ BX  – AX ]  =  Var[ BX ]  +  Var[ AX ]   

=   𝜎𝐵
2

𝑛𝐵
+  𝜎𝐴

2

𝑛𝐴
  =  3/16 + 4/25  =  0⋅3475. 

The observed difference, the test statistic, is 124⋅4 – 123⋅1 = 1⋅3  

and the standard error is 0 3475)⋅  

The Central Limit Theorem tells us that we have a Normal distribution 

⇒ P(difference > 1⋅3) = 1 – 1 3 0 1 (2 2053)
0 3475)

 ⋅ −
Φ = −Φ ⋅ 

⋅ 
   

 =  1 (2 20)−Φ ⋅  =  1– 0⋅9861   =   0⋅0134 

 = 1⋅34%  <  5% 

⇒ significant at 5% level so reject H0  and conclude that there is evidence that machine B  is 
producing bars of chocolate with a heavier mean weight than machine A.  

 

Fortunately  (!)  the formula for testing the difference between sample means 

Z  =    
𝑋�−𝑌� – (𝜇𝑥−𝜇𝑦)

�𝜎𝑥
2

𝑛𝑥
 +  

𝜎𝑦2

𝑛𝑦
 

   is in your formula booklet. 
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Significance testing – variance of population NOT known, large sample 
 

When the variance of the population, σ 2, is not known and when the sample is large, we assume that the 
variance of the sample (meaning the unbiased estimate of σ 2), S 2, is the variance of the population, σ2. 
As the sample is large, the error introduced is small. 

Mean of normal distribution 

Example: A machine usually produces steel rods with a mean length of 25⋅4 cm. The production 
manager wants to test 80 rods to see whether the machine is working correctly. The sample has 
mean 25⋅31 cm and variance  0⋅332 cm2. Advise the production manager, using a 5% level of 
significance. 

Important assumption 

The sample variance, S2,  is taken as, 𝝈�𝟐,  the unbiased estimate of the variance of the 
population, σ 2, and we then assume that the population variance equals the unbiased estimate . 
 

Solution:  

H0:  µ  = 25⋅4. 

H1: µ ≠ 25⋅4       two-tail test, 2⋅5% in each tail 

 

We assume that population variance  σ2  =  the sample variance  S2 = 0⋅332 

 ⇒  σ  = 0⋅33 

For the population of sample means (the sampling distribution of the sample means) 

 expected mean =  25⋅4   from hypothesis 

and standard error  =  0 33
80n

σ ⋅
=  = 0⋅036895121. 

The observed sample mean is 25.31 and for a two-tail test at 5% we consider 

 Φ � 25∙31−25∙4
0∙036895121

� = Φ(−2 ∙ 4393)  =   1 −Φ(2 ∙ 44)  =   0⋅0073  < 2⋅5% 

⇒ reject H0 and conclude that there is evidence that that the machine is not producing rods of 
mean length 25⋅4 cm.  
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Difference between means 

Example: 
A firm has two machines, A and B, which make steel cable. 40 cables produced by machine A 
have a mean breaking strain of  1728 N and variance of 752 N2, whereas 65 cables produced by 
machine B have a mean breaking strain of 1757 N and a variance of 632 N2. Is there any evidence, 
at the 10% level, to suggest that machine B is producing stronger cables than machine A? 

Solution: 
 Let  μA  and  μB   be the mean breaking strengths of all cables produced by machines  A  and B. 

1) H0: μA  =  μB    
2) H1: μB  >   μA       1 tail test 

3) Significance Level 10%. 

4) The Test 
For Machine A 

We assume that the population variance, σA
2 = the sample variance, 2 275AS =  

⇒   variance of sample means  Var[ AX ]  = 
2 275 140 625

40
A

n
σ

= = ⋅ . 

For Machine B 
We assume that the population variance, σB

2 = the sample variance, 2 263BS =  

⇒   variance of sample means  Var[ BX ]  = 
2 263 61 0615...

65
B

n
σ

= = ⋅ . 

For differences in sample means  BX  –  AX  

Expected mean = 0     from hypothesis 

Expected variance is Var[ BX  –  AX ]  =  Var[ BX ]  + Var[ AX ]   

  =   140⋅625  +  61.0615…  =  201⋅6865… 

⇒  standard deviation or standard error  = √201 ∙ 6865 …  =  14⋅2016…. 
We have an observed difference in means,  

test statistic,  BX  –  AX  = 1757 – 1728  = 29 

and for a 1-tail test that B is stronger   

we need the area to the right of  29     mean is treated as continuous, so do not use 28.5 

= 1  –  Φ� 29 −  0
14∙2016…

�  =  1 –  Φ(2 ∙ 04)  =  0⋅0207  <  10%
    

 

which is significant at 10%. 

 

5) Conclusion 
 Reject H0 at the  10% level and conclude that there is evidence that machine B produces 

cables with a greater mean strength than machine A.   
 



 

S3 JUNE 2016  SDB   23 

5 Goodness of fit,  χ2  test 

General points 
 The χ2 test can only be used to test two lists of frequencies – the observed and the expected 

frequencies calculated from the hypothesis. 

 The expected frequencies do not need to be integers (give 2 D.P.) 

 χ2 = ∑ −

i

ii

E
EO 2)(

,   where  Oi  and  Ei  are the observed and expected frequencies. 

 If the expected frequency for a class is less than 5, then you must group this class with the next 
class (or two …). 

 The number of degrees of freedom, ν, is  
the number of cells (after grouping if necessary) minus the number of linear equations connecting 
the frequencies. 

Discrete uniform distribution 
Example: A die is rolled 300 times and the frequency of each score recorded. 

Score:  1 2 3 4 5 6 

Frequency: 43 49 54 57 46 51 

Test whether the die is fair at the 2⋅5% level of significance. 
Solution: H0: The die is fair, the probability of each score is 1/6. 

  H1: The die is not fair, the probability of each score is not 1/6. 

The expected frequencies are all  1/6 × 300 = 50 and we have  

 

Score Observed 
frequency 

Expected 
frequency 

i

ii

E
EO 2)( −

 
1 43 50 0⋅98 
2 49 50 0⋅02 
3 54 50 0⋅32 
4 57 50 0⋅98 
5 46 50 0⋅72 
6 51 50 0⋅02 

Totals 300 300 3⋅04 
 

⇒   χ2 = 3⋅04 

and  ν = number of degrees of freedom  =  n – 1  = 6 – 1 = 5   
since the total is a linear equation connecting the frequencies and is fixed. 

From tables we see that    2
5 (2 5%) 12 832 3 04χ ⋅ = ⋅ > ⋅ , so our observed result is not significant. 

We do not reject H0  and conclude that the die is fair.   
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Continuous uniform distribution 
This is very similar to the discrete uniform distribution – pay attention to the class boundaries and find the 
expected frequencies.   

 

Binomial distribution 
For  H0  The Binomial distribution is a good fit 
we use the mean of the Observed frequencies to calculate the Expected frequencies, and so both Oi and Ei 
give the same mean and total: thus there are 2 linear equations connecting the frequencies and ν = n – 2  

but For  H0  The Binomial distribution, B(30, 0⋅3), is a good fit  
the means using Oi and Ei will be different: thus there is only 1 linear equation, the total, connecting the 
frequencies and so ν = n – 1. 

  

Poisson distribution 
For  H0  The Poisson distribution is a good fit 
we use the mean of the Observed frequencies to calculate the Expected frequencies, and so both Oi and Ei 
give the same mean and total: thus there are 2 linear equations connecting the frequencies and ν = n – 2  
but  For  H0  The Poisson distribution, Po(3), is a good fit  
the means using Oi and Ei will be different: thus there is only 1 linear equation, the total, connecting the 
frequencies and so ν = n – 1. 

Example: A switchboard operator records the number of new calls in 69 consecutive one-minute 
periods in the table below. 

number of calls 0 1 2 3 4 5 ≥ 6 
 frequency 6 9 11 15 13 9 6 

a) Say why you think that a Poisson distribution might be suitable. 

b) Find the mean and variance of this distribution. Do these figures support the view that they 
might form a Poisson distribution? 

c) Test the goodness of fit of a Poisson distribution at the 5% level. 

Solution:  

a) Telephone calls are likely to occur singly, randomly, independently and uniformly which 
are the conditions for a Poisson distribution. 

b) Treating  ≥ 6  as 7 we calculate the mean and variance 
  

x f xf x2f 
0 6 0 0 
1 9 9 9 
2 11 22 44 
3 15 45 135 
4 13 52 208 
5 9 45 225 
7 6 42 294 
 69 215 915 
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⇒ mean =  215/69  = 3⋅12 
and variance =  915/69  –  (215/69)2

  = 3⋅55. 
From these figures we can see that the mean and variance are approximately equal: since the 
mean and variance of a Poisson distribution are equal this confirms the view that the 
distribution could be Poisson. 

 

c) H0: The Poisson distribution is a suitable model 

H1: The Poisson distribution is not a suitable model. 

The Poisson probabilities can be calculated from   P(r) = 
!

re
r

λλ −

   where λ = 3⋅12, and the 

expected frequencies by multiplying by N = 69. 

Note that the probability for  ≥ 6 is found by adding the other probabilities and subtracting 
from 1. 

 

x O p E O  
(grouped) 

E  
(grouped) E

EO 2)( −  

0 6 0⋅044337 3⋅059234    

1 9 0⋅138151 9⋅532395 15 12⋅59 0⋅461326 

2 11 0⋅215235 14⋅8512 11 14⋅85 0⋅998148 
3 15 0⋅223553 15⋅42515 15 15⋅43 0⋅011983 

4 13 0⋅174145 12⋅01597 13 12⋅02 0⋅079900 
5 9 0⋅108525 7⋅488214 9 7⋅49 0⋅304419 

≥ 6 6 0⋅096056 6⋅627836 6 6⋅63 0⋅059864 

 69  69  69.01 1.915641 
 

The expected frequency for x = 0  is  3.06 < 5  so it has been grouped with x = 1. 

Thus we have n = 6 classes (after grouping) and  ν  = n – 2 = 4 

and  488.9%)5(2
4 =χ . 

We have calculated  χ2 =  1.92  <  9.488  which is not significant so we do not reject H0 
and conclude that the Poisson distribution is a suitable model.   
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The normal distribution 
 

For  H0  The Normal distribution is a good fit 
we use the mean and variance of the Observed frequencies to calculate the Expected frequencies, and so 
both Oi and Ei give the same mean, variance and total: thus there are 3 linear equations connecting the 
frequencies and ν = n – 3  

but For  H0  The Normal distribution, N(14, 32), is a good fit  
the means and variances using Oi and Ei will be different: thus there is only 1 linear equation, the total, 
connecting the frequencies and so ν = n – 1. 
 

Example: The sizes of men’s shoes purchased from a shoe shop in one week are recorded below. 

size of shoe  ≤ 6 7 8 9 10 11 ≥ 12 

number of pairs  14 19 29 45 40 21   7 

Is the manager’s assumption that the normal distribution is a suitable model justified at the 5% 
level? 

 

Solution: H0: The normal distribution is a suitable model 

  H1: The normal distribution is not a suitable model. 

 

The total number of pairs, mean and standard deviation are calculated to be   175,  8.886  and  
1.713  (taking ≤ 6  as 5  and  ≥ 12  as 12) 
Remembering that  size 8  means from 7.5 to 8.5 we need to find the area between 7.5 and 8.5 and 
multiply by 175 to find the expected frequency for size 8, and similarly for other sizes. 

 

x 
s

mxz −
=  Φ(z) class area = p E = 175p O 

E
EO 2)( −

 

6.5 -1.39 0.082 < 6.5 0.082 14.4 14 0.01 

7.5 -0.81 0.209 6.5 to 7.5 0.209 – 0.082 = 0.127 22.2 19 0.46 

8.5 -0.23 0.409 7.5 to 8.5 0.409 – 0.209 = 0.200 35.0 29 1.03 

9.5 0.36 0.641 8.5 to 9.5 0.641 – 0.409 = 0.232 40.6 45 0.48 

10.5 0.94 0.826 9.5 to 10.5  0.826 – 0.641 = 0.185 32.4 40 1.78 

11.5 1.53 0.937 10.5 to 11.5 0.937 – 0.826 = 0.111 19.4 21 0.13 

   > 11.5 1 – 0.937 = 0.063 11.0 7 1.45 

       5.34 
 

n = 7 classes & 3 linear equations connecting the frequencies (N, m ,s) ⇒ ν = n – 3 = 4. 

488.9%)5(2
4 =χ    and we have calculated  χ2 = 5.34 < 9.488 and so we do not reject H0  and 

therefore conclude that the normal distribution is a suitable model.  
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Contingency tables 
 

For a  5 × 4 table in which the totals of each row and column are fixed the  ‘?’  cells represent the degrees 
of freedom since if we know the values of the  ?s  the frequencies in the other cells can now be calculated  

  

 A B C D E totals 

W ? ? ? ?   

X ? ? ? ?   

Y ? ? ? ?   

Z       

totals       
 

Thus there are  (5 –1) × (4 – 1) = 12. 

Generalising we can see that for an m × n table the number of degrees of freedom is  (m – 1)(n – 1). 
  
Example: Natives of England, Africa and China were classified according to blood group giving the 

following table. 

 O A B AB 

English 235 212 79 83 

African 147 106 30 51 

Chinese 162 135 52 43 
 

Is there any evidence at the 5% level that there is a connection between blood group and 
nationality? 

 

Solution: H0: There is no connection between blood group and nationality. 

  H1: There is a connection between blood group and nationality. 

 

First redraw the table showing totals of each row and column 

 

 O A B AB totals 

English 235 212 79 83 609 

African 147 106 30 51 334 

Chinese 162 135 52 43 392 

totals 544 453 161 177 1335 



 

  S3 JUNE 2016  SDB 28 

Now we need to calculate the expected frequency for English and group O. There are 609 English 
and 1335 people altogether so  609/1335  of the people are English, and from H0 we know that there 
is no connection between blood group and nationality, so there should be  609/1335  of those with 
group O who are also English 

⇒ expected frequency for English and group O  is  2.248
1335

544609544
1335
609

=
×

=×  

this can become automatic if you notice that you just multiply the totals for the row and column 
concerned and divide by the total number 

 

 O A B AB totals 

English 2.2481335
544609 =×  6.2061335

453609 =×  4.731335
161609 =×

 
7.801335

177609 =×

 
608.9 

African 1.1361335
544334 =×  3.1131335

453334 =×  3.401335
161334 =×

 
3.441335

177334 =×

 
334 

Chinese 7.1591335
544392 =×  0.1331335

453392 =×  3.471335
161392 =×

 
0.521335

177392 =×

 
392 

totals 544 452.9 161 177 1335 
 

The value of χ2  is calculated below 

 

Observed 
frequency 

Expected 
frequency E

EO 2)( −
 

235 248.2 0.70 
212 206.6 0.14 
79 73.4 0.43 
83 80.7 0.07 
147 136.1 0.87 
106 113.3 0.47 
30 40.3 2.63 
51 44.3 1.01 
162 159.7 0.03 
135 133.0 0.03 
52 47.3 0.47 
43 52.0 1.56 
  8.41 

We have   ν =  (4 – 1)(3 – 1) = 6  degrees of freedom  and  592.12%)5(2
6 =χ . 

We have calculated  χ2 = 8.41  < 12.592    

⇒  do not reject  H0  and therefore conclude that there is no connection between  nationality and 
blood group.   
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6 Regression and correlation 

Spearman’s rank correlation coefficient 

Ranking and equal ranks 

Ranking is putting a list of figures in order and giving each one its position or rank. 

Equal numbers are given the average of the ranks they would have had if all had been different. 

 

Example: Rank  the following numbers:  45, 65, 76, 56, 34, 45, 23, 67, 65, 45, 81, 32. 

 

Solution: First put in order and give ranks as if all were different: then give the average rank for 
those which are equal. 

Numbers: 81 76 67 65 65 56 45 45 45 34 32 23 

Actual rank 1 2 3 4= 4= 6 7= 7= 7= 10 11 12 

Rank (if all different)  1  2   3  4   5   6   7  8   9  10 11 12 

average for equal ranks     2
1

2
54 4=+        83

987 =++  

Modified rank  1  2  3  4½  4½    6  8  8  8  10 11 12 

 

You must now calculate the PMCC, not Spearman, using the modified ranks. 

  

              

Spearman’s rank correlation coefficient 

To compare two sets of rankings for the same  n  items, first find the difference, d, between each pair of 
ranks and then calculate Spearman’s rank correlation coefficient 

  
)1(

6
1 2

2

−
−= ∑

nn
d

rs  

This is the same as the product moment correlation coefficient of the two sets of ranks and so we know 
that    

 rs = +1 means rankings are in perfect agreement, 

 rs = –1 means rankings are in exact reverse order, 

 rs =  0  means that there is no correlation between the rankings. 
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Example: Ten varieties of coffee labelled  A, B, C, ..., J  were tasted by a man and a woman. Each 
ranked the coffees from best to worst as shown. 

Man:  G H C D A E B J I F 

Woman: C B H G J D I E F A 

Find Spearman’s rank correlation coefficient. 

 

Solution: Rank for each person, find d and then rs. 

Coffee Man Woman d d2 

A 5 10 -5 25 

B 7 2 5 25 

C 3 1 2 4 

D 4 6 -2 4 

E 6 8 -2 4 

F 10 9 1 1 

G 1 4 -3 9 

H 2 3 -1 1 

I 9 7 2 4 

J 8 5 3 9 

    86 
 

521.0521212.0
9910
8661

)1(
6

1 2

2

==
×
×

−=
−

−= ∑
nn

d
rs     to  3 S.F.   

 

Spearman or PMCC 

Use of Spearman’s rank correlation coefficient 
(i) Use when one, or both, sets of data are not from a normal population. 
(ii) Use when the data does not have to be measured on scales or in units (probably not normal). 
(iii) Use when data is subjective − e.g. judgements in order of preference (not normal). 
(iv) Can be used if the scatter graph indicates a non-linear relationship between the variables, since 

the PMCC is used to indicate linear correlation. 
(v) Do not use for tied ranks (Spearman formula depends on non-tied ranks). 

 

Use of Product moment correlation coefficient 
(i) Use when ranks are tied – see above: modify the ranks and then use PMCC on the modified 

ranks. 
(ii) Use when both sets of figures are normally distributed (this will not be the case when using 

ranks). 
(iii) Use when the scatter diagram indicates a linear relationship between the variables – i.e. when 

the points lie close to a straight line. 
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Testing for zero correlation 
N.B. the tables give figures for a ONE-TAIL test 

Product moment correlation coefficient 

PMCC tests to see if there is a linear connection between the variables. For strong correlation, the points 
on a scatter graph will lie close to a straight line. 

Reminder:   PMCC  = ρ  = 
yyxx

xy

SS

S
   

where    
( )

∑ ∑−=
n
x

xS i
ixx

2
2 , 

( )
∑ ∑−=

n
y

yS i
iyy

2
2 , 

( )( )
∑ ∑∑−=

n
yx

yxS ii
iixy . 

 

Example: The product moment correlation coefficient between 40 pairs of values is +0.52. Is there 
any evidence of correlation between the pairs at the 5% level? 
 

Solution: H0: There is no correlation between the pairs,  ρ = 0. 

   H1: There is correlation, positive or negative, between the pairs,   ρ ≠ 0, two-tail test 

 

From tables for n = 40 which give one-tail figures, we must look at the 2.5% column and the critical 
values are  ±0.3120 
The calculated figure is  0.52 > 0.3120  and so is significant 

⇒ we reject  H0  and conclude that there is some correlation (positive or negative) between 
the pairs.   

 

Spearman’s rank correlation coefficient 

Spearman tests to see if there is a connection (or correlation) between the ranks. 
Example: It is believed that a person who absorbs a drug well on one occasion will also absorb a 

drug well on another occasion. Tests on ten patients to find the percentage of drug absorbed gave 
the following value for Spearman’ rank correlation coefficient,  rs = 0.634. Is there any evidence at 
the 5% level of a positive correlation between the two sets of results. 

Solution: H0: There is no correlation between the two sets of results,  ρs = 0, 

   H1: There is positive correlation between the two sets of results,  ρs > 0, one-tail test. 
From the tables for  n = 10 and a one-tail test the critical value for 5% is  0.5364. 

The calculated value is 0.634  >  0.5364  which is significant 

⇒ reject H0; conclude that there is evidence of positive correlation between the two sets of 
results. 

Note that this shows correlation between the ranks of the two sets of results. 
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Comparison between PMCC and Spearman 

Example: A random sample of 8 students sat examinations in Geography and Statistics. The product 
moment correlation coefficient between their results was 0⋅572 and the Spearman rank correlation 
coefficient was 0⋅655. 

(a) Test both of these values for positive correlation. Use a 5% level of significance. 

(b)  Comment on your results. 

 

Solution:  
(a) H0 :  ρ = 0  ;  H1 :  ρ > 0 

 For the PMCC  

the 5% Critical Value is 0⋅6215 

0⋅572 < 0⋅6215 ⇒      not significant at %5 

⇒     there is evidence that there is no positive correlation. 
For Spearman’s rank correlation coefficient 

the 5% Critical Value is 0⋅6429 

0⋅655 > 0⋅6429 ⇒      significant at 5% 

⇒     there is evidence of positive correlation. 

 

(b) From the PMCC there is not enough evidence to conclude that as Statistics marks 
increased Geography marks also increased  
− i.e. conclude that the points on a scatter diagram do not lie close to a straight line.  
From Spearman’s rank correlation coefficient there is evidence that students ranked 
highly in Statistics were also ranked highly in Geography, or people with high scores in 
Statistics also had high scores in Geography 
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7 Appendix 

Combining random variables 
 

Let X and Y  be random variables with probability distributions 

X  ∼   { X1, X2, X3, …, Xn}  with probabilities  (p1, p2, p3, …, pn), and 

Y  ∼   { Y1, Y2, Y3, …, Ym}  with probabilities  (q1, q2, q3, …, qm), 
Then the random variable  X + Y is all possible combinations  xi + yj  as  i varies from 1 to n and  j 
varies from 1 to m. 

Let P(xi + yj) = rij. 

Notice that            �𝑟𝑖𝑗

𝑚

𝑗=1

 =  𝑟𝑖1 +  𝑟𝑖2 +  𝑟𝑖3 +  … + 𝑟𝑖𝑚  =  𝑝𝑖 

    and, similarly, �𝑟𝑖𝑗

𝑛

𝑖=1

 =  𝑞𝑗 

 

 

E[X + Y]  =  E[X] + E[Y] 

E[𝑋 + 𝑌]    =  ���𝑥𝑖 + 𝑦𝑗�𝑟𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

=   ��𝑥𝑖𝑟𝑖𝑗
𝑗𝑖

 +  ��𝑦𝑗𝑟𝑖𝑗
𝑖𝑗

  

= �𝑥𝑖
𝑖

�𝑟𝑖𝑗
𝑗

 +  �𝑦𝑗
𝑗

�𝑟𝑖𝑗
𝑖

  

= �𝑥𝑖𝑝𝑖

𝑛

𝑖=1

 +  �𝑦𝑗𝑞𝑗

𝑚

𝑗=1

    

 

⟹     𝐄[𝑿 + 𝒀] =   𝐄[𝑿] +  𝐄[𝒀]  
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Var[X + Y]  =  Var[X] + Var[Y]  

In this case we take X and Y to be independent, 

⇒ rij = P(xi and yj)  =  P(xi)  ×  P(yj)  =  pi × qj. 

Also notice that  ∑𝑝𝑖 =  ∑𝑞𝑗 = 1 

 

Var[X + Y]  =  E[(X + Y)2]   –   (E[X + Y])2 

= ���𝑥𝑖 + 𝑦𝑗�
2
𝑟𝑖𝑗

𝑗𝑖

 −   (E[𝑋] + E[𝑌])2 

= ��𝑥𝑖2𝑝𝑖𝑞𝑗
𝑗𝑖

+  2��𝑥𝑖𝑦𝑗𝑝𝑖𝑞𝑗
𝑗𝑖

+ ��𝑦𝑗2𝑝𝑖𝑞𝑗
𝑗𝑖

− ((E[𝑋])2 + 2E[𝑋]E[𝑌] + (E[𝑌])2) 

= �𝑥𝑖2𝑝𝑖
𝑖

�𝑞𝑗
𝑗

+ 2�𝑥𝑖𝑝𝑖
𝑖

�𝑦𝑗𝑞𝑗
𝑗

+ �𝑦𝑗2𝑞𝑗
𝑗

�𝑝𝑖
𝑖

− (E[𝑋])2 − 2E[𝑋]E[𝑌] −  (E[𝑌])2 

= �𝑥𝑖2𝑝𝑖
𝑖

+ 2E[𝑋]E[𝑌] + �𝑦𝑗2𝑞𝑗
𝑗

− (E[𝑋])2 − 2E[𝑋]E[𝑌] −  (E[𝑌])2 

= E[𝑋2] − (E[𝑋])2  +  E[𝑌2] − (E[𝑌])2  
 

⇒    Var[X + Y]  =  Var[X] + Var[Y],        if X and Y are independent. 

 
 

Unbiased & biased estimators 

Unbiased estimators 

An estimator  �̂�   for a parameter  λ  is said to be unbiased if  E[�̂�]  =  λ. 
Example: 
A bag has 468 beads of two colours, white and green. 20 beads are taken at random and the number, i, of 
green beads in the sample is counted.  
To estimate the true number of green beads, g, in the bag, we calculate 

𝑔�  =   𝑖
20

  ×   468 .  

If g is the true number of green beads in the bag 
then the probability of drawing a green bead in a single trial is  𝑝 =  𝑔

468
 ,  

 and drawing  n  = 20 beads with replacement gives a Binomial distribution  B (n, p).  
Thus   µ  =  E[i] =  np  =  20 × 𝑔

468
 

We do not actually know the number of green beads, and want to estimate this number after taking one 
sample 

estimate    𝑔�  =   𝑖
20

  ×   468. 
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We now find the expected value of this estimate 

 ⇒   E[𝑔�]  =  E� 𝑖
20

  ×   468� =  468
20

  × E[i] =  468
20

  × 20 × 𝑔
468

  =  g,  the true number 

⇔ the expected value of the estimator, 𝑔�,  is equal to the true value, g 
⇒ the estimator, 𝑔�, is unbiased. 

 

Biased Estimators 
An estimator �̂�   for a parameter  λ  is said to be biased if E[�̂�]  ≠  λ. 
Example 
A naturalist wishes to estimate the number of squirrels in a wood. He first catches 50 squirrels, marks 
them and then releases them. Later he catches 30 squirrels and counts the number, i, which have been 
marked.  

The true number in the population, n,  is then estimated as 𝑛� from the equation 

   50
𝑛�

=  𝑖
30

   ⇒   𝑛�  =   1500
𝑖

  . 

Now E[𝑛�] =  
30

0

1500
ip

i
×∑    

i.e. it is possible that i = 0, in which case the estimate  𝑛�  is infinite  when  i = 0,    
⇒   E[𝑛�] is also infinite and so cannot be equal to its true value 

⇒ in this case the estimator    𝑛�  =  i
1500   is biased. 

 
 

Unbiased estimates of population mean and variance  
 

Let X be a random variable drawn from a population with mean µ and variance σ 2, then 

E[X] = µ , and  Var[X] = σ 2. 
A random sample,  X1, X2, X3, …, Xn, of size n is taken from the population. 

The sample mean is 𝑋� =  1
𝑛

(𝑋1 + 𝑋2 + 𝑋3 +  … + 𝑋𝑛). 

⇒ E[Xi] = µ , and  Var[Xi] = σ 2  for  i = 1, 2, 3, …, n. 
 

 

Unbiased estimate of the mean 

 E[𝑋�] = E �1
𝑛

(𝑋1 + 𝑋2 + 𝑋3 +  … + 𝑋𝑛)�  =  1
𝑛

(E[𝑋1] + E[𝑋2] + E[𝑋3] + ⋯E[𝑋𝑛]) 

  = 1
𝑛
 (µ +µ +µ + … +µ)  =  µ   

⇒ E[𝑋�] = µ, the true value of the mean 

⇒ E[𝑋�]  is an unbiased estimate of the mean of the population. 
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Unbiased estimate of the variance of the population 

Preliminary results 

(i) Var[X] = E[X 2] − (E[𝑋])2  =  E[X 2] −  µ 2 

 ⇒ E[X 2]  =  Var[X]  + µ 2  =  σ 2  +  µ 2  I 
 

(ii) Var[ 𝑋�]  =  E[𝑋�2] −  (E[𝑋�])2  =  E[𝑋�2] − 𝜇2  

⇒    E[𝑋�2]      = Var[ 𝑋�]  + µ 2 

  =  Var �1
𝑛

(𝑋1 + 𝑋2 + 𝑋3 + … + 𝑋𝑛)�  +  µ 2 

  = 1
𝑛2

Var[𝑋1 + 𝑋2 + 𝑋3 + … + 𝑋𝑛]  +  µ 2 

  = 1
𝑛2

(Var[𝑋1] + Var[𝑋2] + Var[𝑋3] + ⋯+ Var[𝑋𝑛])  +  µ 2 

  =  1
𝑛2

(𝜎2 + 𝜎2 + 𝜎2 + … + 𝜎2)  +  µ 2 

⇒   E[𝑋�2] =  1
𝑛
 σ 2  +  µ 2    II 

 
Proof 

The variance of  X1, X2, X3, … , Xn  is defined to be 

Variance  =  (s.d.)2 = 1
𝑛
∑𝑋𝑖2 −  𝑋�2 

⇒ E[(s.d.)2] =  E �1
𝑛
∑𝑋𝑖2 −  𝑋�2�   

   =  E � 1
𝑛
∑𝑋𝑖2� −  E[𝑋�2]   

   =  1
𝑛

E�∑𝑋𝑖2� − E[𝑋�2]  

   =  1
𝑛
∑E�𝑋𝑖2� −  E[𝑋�2]  

=  1
𝑛
∑(𝜎2 + 𝜇2) −  E[𝑋�2]    since  E�𝑋𝑖2� = (𝜎2 + 𝜇2) from I  

   =  1
𝑛
�𝑛(𝜎2 + 𝜇2) −  �1

𝑛
𝜎2 + µ2��  since  E[𝑋�2] = �1

𝑛
𝜎2 + 𝜇2� from II 

⇒ E[(s.d.)2] =  (σ 2 + µ 2)  −  �1
𝑛

 𝜎2   +  µ2�  =  𝑛−1
𝑛

 𝜎2  

  

Thus  E[(s.d.)2]  is not equal to the true value, and so (s.d.)2  is a biased estimator of  σ 2, 

but multiplying both sides by  𝑛
𝑛−1

 , we can see that 
𝑛

𝑛−1
 (s.d.)2  is an unbiased  estimator of σ 2. 
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Bias 

Example: A large  bag contains counters: 60% have the number 0, and 40% have the number 1. 

(a) Find the mean, µ,  and variance, σ 2. 
A simple random sample of size 3 is drawn. 

(b) List all possible samples. 

(c) Find the sampling distribution for the mean  𝑋�  =   𝑋1+ 𝑋2+𝑋3
3

 

(d) Use your answers to part (c)  to find  E[𝑋�],  and  Var [𝑋�]. 
(e) Find the sampling distribution for the mode  M. 

(f ) Use your answers to part (e)  to find  E[𝑀],  and  Var [𝑀]. 
 

Solution:  

(a) µ  = ∑𝑥𝑖𝑝𝑖  =  0 × 0⋅6  +  1 × 0⋅4  =  0⋅4 

 σ 2 =  ∑𝑥𝑖2𝑝𝑖 – µ 2 =  (02 × 0⋅6  +  12 × 0⋅4)  –  0⋅42  =  0⋅24 

(b) Possible samples are 

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) 

  (0, 1, 0) (1, 0, 1) 

  (0, 0, 1) (0, 1, 1) 

(c) From  (c) we can find the sampling distribution of the mean   

𝑋� 0 1
3
 2

3
 1 

p 0⋅63 3 × 0⋅62 × 0⋅4 3 × 0⋅6 × 0⋅42 0⋅43 

 0⋅216 0⋅432 0⋅288 0⋅064 

(d) E[𝑋�] = 0 × 0⋅216  +    1
3
 × 0⋅432  +  2

3
 × 0⋅288  +  1 × 0⋅064  =  0⋅4 

 Var[𝑋�]  = (02 × 0⋅216  +    �1
3
�
2
 × 0⋅432  +  �2

3
�
2
 × 0⋅288  +  12 × 0⋅064)  – 0⋅42 

 ⇒ Var[𝑋�]  = 0⋅08 

(e) From  (c) we can find the sampling distribution of the mode   

M 0  1 

p 0⋅63 + 3 × 0⋅62 × 0⋅4  3 × 0⋅6 × 0⋅42 + 0⋅43 

 0⋅648 0⋅352 

(f ) E[𝑀] = 0 × 0⋅648  +    1 × 0⋅352  =  0⋅352 

 Var[𝑀]  = (02 × 0⋅648 + 12 × 0⋅352)  – 0⋅3522 

 ⇒ Var[𝑀]  = 0⋅228096 

Thus the sample mean is an unbiased estimator of the mean of the population 

since  E[𝑋�]  =  0⋅4  = µ ,  the true value 
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but  the sample mode is a biased estimator of the mode of the population 

 E[𝑀] = 0⋅352,  but the true value of the mode of the population is  0. 

 We say that the bias is   E[𝑀]  –  (the true value)  =  0⋅352 – 0  = 0⋅352 
  

In general, if  �̂�  is a biased estimator of the parameter  λ  then the bias is defined to be 

 bias = E[�̂�]  – λ    
In the above example, the bias in estimating the mode from the sample is 

bias   =  E[𝑀]  –  true value 

 =   0⋅352  –  0   =  0⋅352 
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Probability generating functions 
Probability functions are a neat idea, and are useful for finding the expected mean and variance for 
distributions which have a probability generating function which is easy to differentiate. 

If X is a random variable on the set  [1, n], then  G(t) =  𝑝0 + 𝑝1𝑡 + 𝑝2𝑡2 +  … + 𝑝𝑛𝑡𝑛  is a probability 
generating function, p.g.f., 

if    (i)  �𝑝𝑖

𝑛

1

= 1,   and   (ii)  𝑝𝑖 ≥ 0  ∀ 𝑖 

P(X = i)  =  the coefficient of  ti.  The probability generating function can be thought of as a probability 
labelling function, where  ti  acts as a label for the probability that X = i. 
 

Expected mean and variance for a p.g.f.  

We know that   E[X]      =   ∑𝑥𝑖𝑝𝑖 =  0 × 𝑝0 +  1 × 𝑝1 + 2 × 𝑝2 +  … + 𝑛 × 𝑝𝑛 =  ∑ 𝑖𝑝𝑖  

and that  Var[X]   =   E[𝑋2] − (E[𝑋])2 

      =   02 × 𝑝0 +  12 × 𝑝1 + 22 × 𝑝2 +  … + 𝑛2 × 𝑝𝑛 −  (∑ 𝑖𝑝𝑖 )2 
    

Notice that   G′(t)   = 0 × 𝑝0 +  1 × 𝑝1 + 2 × 𝑝2𝑡 + 3 × 𝑝3𝑡2 +  … + 𝑛 × 𝑝𝑛𝑡𝑛−1  

⇒   G′(1)  = 0 × 𝑝0 +  1 × 𝑝1 + 2 × 𝑝2 +  3 × 𝑝3 +  … + 𝑛 × 𝑝𝑛  

⇒ Expected mean  =  E[X]  =  G′(1)   
 

 

and  G′′(t)  =  0 × (−1) × 𝑝0 +  1 × 0 × 𝑝1 + 2 × 1 × 𝑝2 + 3 × 2 × 𝑝3𝑡 +  … + 𝑛(𝑛 − 1) × 𝑝𝑛𝑡𝑛−2  

⟹                  G"(1) = �𝑖(𝑖 − 1)𝑝𝑖

𝑛

1

 =   �𝑖2𝑝𝑖

𝑛

1

 −  �𝑖𝑝𝑖

𝑛

1

  

⟹                    �𝑖2𝑝𝑖

𝑛

1

 =   G"(1) + �𝑖𝑝𝑖

𝑛

1

   

⟹                  Var[𝑋] =   �𝑖2𝑝𝑖

𝑛

1

−  ��𝑖𝑝𝑖

𝑛

1

�
2

   

⇒    Var[X]  =  G′′(1) + G′(1) − (G′(1))2 

 

Thus for a probability generating function  G(t) =  𝑝0 +  𝑝1𝑡 + 𝑝2𝑡2 +  … + 𝑝𝑛𝑡𝑛, 

E[X]  =  G′(1)    and    Var[X]  =  G′′(1) + G′(1) − (G′(1))2. 
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Mean and variance of a Binomial distribution 

If  X  ∼ B(n, p)  then  P(X = i)  =  nCi piqn−i,  where  p + q = 1. 
These probabilities are the coefficients of  ti  in the expansion of  (q + pt)n 

⇒ the p.g.f. for the binomial distribution B(n, p)  is  G(t) = (q + pt)n. 

⇒ G′(t)  =  np(q + pt)n−1,   and   G′′(t)  =  n(n − 1)p2 (q + pt)n−2 

⇒  µ  =  E[X]  =  G′(1) = np       since p + q = 1 

and     σ 2 = Var[X]  =  G′′(1) + G′(1) − (G′(1))2 

    =  n(n − 1)p2 + np − (np)2  =  n2p2 − np2 + np − n2p2 

⇒    σ 2 = Var[X]  =  np(1 − p)   or   npq. 
 

 Mean and variance of a Poisson distribution  

If  X  ∼ PO(λ)  then, in a given interval,  P(X = i)  =  𝜆
𝑖𝑒−𝜆

𝑖!
,  where  λ is the mean number of occurrences 

in an interval of the same length, i = 0, 1, 2, 3, … 

 

⟹        G(𝑡) =  �
𝜆𝑖𝑒−𝜆

𝑖!

∞

𝑖=0

𝑡𝑖   =    𝑒−𝜆�
𝜆𝑖

𝑖!

∞

𝑖=0

𝑡𝑖   =   𝑒−𝜆𝑒𝜆𝑡   

⇒  G′(t)  =  𝜆𝑒−𝜆𝑒𝜆𝑡       and     G′′(t)  =  𝜆2𝑒−𝜆𝑒𝜆𝑡 

⇒  µ  =  E[X]  =  G′(1) = λ 𝑒−𝜆𝑒𝜆  =  λ   

⇒  µ  =  E[X]  =   λ  
     

and     σ 2 = Var[X]   =  G′′(1) + G′(1) − (G′(1))2 

     =  λ2  +  λ  −  λ2      since  𝑒−𝜆𝑒𝜆 = 1 

⇒     σ 2 = Var[X]   =  λ  
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Sampling, 4 
quota sampling, 7 

sample means, 14 

simple random sampling, 5 

stratified sampling, 6 

systematic sampling, 5 

with and without replacement, 6 

Significance test 
zero correlation, 31 

Significance test – variance of population known 
difference between means, 19 

mean of normal distribution, 18 

Significance test – variance of population NOT 
known 
difference between means, 22 

mean of normal distribution, 21 

Spearman 
comparison with PMCC, 32 

Spearman’s rank correlation coefficient, 29 
when to use, 30 

Standard error, 15 

Unbiased estimators, 8 
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